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Abstract

This thesis presents the ideas underlying a computer program that takes
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plus specifications and a utility function, and returns catalog numbers from
predefined catalogs for the optimal selection of components implementing
the design. Unlike programs for designing single components or systems,
the program provides the designer with a high level "language" in which to
compose new designs. It then performs some of the detailed design process.

The process of "compilation", or transformation from a high to a low level
description, is based on a formalization of quantitative inferences about hi-
erarchically organized sets of artifacts and operating conditions. This allows
design compilation without the exhaustive enumeration of alternatives.

The program has been tested on a wide variety of power transmission
and temperature sensing problems. Key elements of the theory have been
formally proven. It appears that the theory has applications outside design.
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Chapter 1

Introduction

This chapter answers three questions: First, what is this thesis about? Sec-

ond, why might it be worth reading? Third, how can it be read most easily

and effectively?

1.1 What's this about?

This thesis describes the theory underlying, and the performance of, a com-

puter program which selects standard components from catalogs in order to

implement a wide variety of mechanical designs. The program's user forms

a schematic diagram of the desired design by combining such elements as

those in Figure 1.1. He also enters specifications in a special "labeled inter-

val" language, and a cost function to be minimized. The program returns

the catalog numbers for an optimal selection of components.

We can view the schematics and the specifications as a description in a

8
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Figure 1.1: Sample schematic elements

high level language, and the catalog numbers as a description in a low-level

language. Then, by analogy with computer language compilers, we can call

this program a "mechanical design compiler". Like computer language com-

pilers, such programs should improve designer productivity, prevent errors,

and allow the exploration of more alternatives in greater depth.

A design compiler is not an "expert system," intended to replace or advise

a human designer working on, say, air cylinders. Rather, it is intended to

quickly perform part of the designer's task for a broad spectrum of designs,

allowing the designer to avoid thinking about some of the details of the

design. This objective establishes some fundamental guidelines.

First, the most important details to automate are quantitative; these



CHAPTER 1. INTRODUCTION 10

are the ones people handle worst, and computers best. Second, compilers

should be right all the time; "heuristic" programs can quickly generate more

reasonable-sounding but possibly incorrect suggestions than any human can

absorb and correct. Third, as I will argue, designers and design compilers

must draw inferences about sets of artifacts (physical objects) under sets of

operating conditions; they cannot simply simulate or analyze single, com-

pletely specified designs. For these reasons, the bulk of this thesis is con-

cerned with the rigorous development of a theory of quantitative inference

about sets of artifacts under sets of operating conditions.

1.2 Why read this?

This theory of inference may be a little daunting; its details involve some

new notation, a little predicate calculus and set theory, and some reasonably

straightforward proofs. It falls squarely on the boundary between mechanical

engineering and artificial intelligence research; it therefore requires mechan-

ical engineers to think about informal "designer's intuitions" in a decidedly

formal way, and computer scientists to learn something about design. It

seems appropriate to indicate why understanding this theory might be worth

the trouble.

1.2.1 The short-term, pragmatic argument

This aigument comes in two parts. First, mechanical design compilers are

potentially powerful, broadly useful engineering tools. My program has been
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tested on a wide variety of power transmission system design problems, and

a few temperature sensing problems. Even in its current research prototype

form it allows me to do the most tedious aspects of such designs an order of

magnitude faster than I could unaided.

Second, this compiler appears to be the only one. I have found no other

programs identified as "mechanical design compilers" by their creators, but

there are some which come close; the ways in which they fall short are infor-

mative. The programs of [1] and [2] offer the designer a schematic language,

but perform analysis only. They do not select components. The programs

of [3] and [4] select components, but do not provide the designer with a

schematic language enabling him to quickly formulate new designs. An ear-

lier program of mine [5] provided a schematic language and selected compo-

nents, but was ad hoc and limited. Finally, Shin-Orr[6], in effect did write

a mechanical design compiler, but one limited to the layout of spindle-drive

gears for multi-spindle lathes.

I believe that these programs cannot compile a varieties of designs because

their representation of specifications is impoverished; they use "constraints"

which restrict variables to a certain set of values. In fact, such restrictions

are only one of many important relationships connecting variables, artifact

sets, value sets, and operating condition sets. The core of this thesis is an

analysis of these relationships and their use in design.
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1.2.2 The basic research argument

We have a wide variety of mathematical tools for reasoning about a single ex-

isting artifact. This thesis provides formal' tools for drawing inferences about

many possible artifacts and operating conditions simultaneously. Designers

have always done this kind of reasoning, just as people can do arithmetic

without knowing the associative, commutative, and distributive. But for-

mally expressing such laws provides us with great power to automate, to

prove, to generalize, and to explore further.

Arithmetic laws say something fundamental about the way we should

think about numbers. Boolean algebra says something fundamental about

the way we should think about "True" and "False"2 ; I hope the "labeled

interval calculus" says something fundamental about the way we should think

about sets of artifacts and operating conditions. Such reasoning is likely to be

useful well beyond component selection, and even outside design; Chapter 7

offers some speculations about such uses.

Such formal representations of "ways of thinking" are core pursuits of

artificial intelligence research. Indeed, my formalisms are probably too com-

plex for routine human use3 . They are made useful by symbolic computation;

they are necessary because computers are relentlessly formal.

'By formJ, I mean that they allow correct inferences based only on the form of the

input expressions, without regard to their meaning; formal operations can be programmed.
2Boole called his work "the laws of thought", which seems to go a little too far; I briefly

considered titling this thesis "The Laws of Thought, Part N".
3This may explain why they were not developed in the nineteen h century.
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1.3 How to read this thesis

My work involves a number of different levels (Figure 1.3); each level is

addressed by at least one chapter of its own. These chapters can be read

in virtually any order; this section is designed to allow readers to pick an

appealing sequence. Further, this thesis is a snap-shot of work still very

much alive and developing. Some chapters look more durable than others,

and this section provides the reader with some warnings in this regard.

Design Experience( 'I
Key Ideas

~analysis

"Design Calculus" Math: set theory

Ipredicate calculus
Program

Figure 1.2: The Organization of the Work

Chapter 2 provides an overview of the central algorithm, some sense of

what the program is like to use, and a discussion of its performance. It is first

in the sequence because I think before investing much time understanding

the work, most readers should assure themselves that it is actually good for

something. Readers content with a top-level view might read only chapters

2 and 6.1. The algorithm seems sound, but is subject to generalization;

the performance results should only be improved by the simpler and more
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powerful next generation of design compilers.

Chapter 3 uses design examples to introduce the "labeled interval cal-

culus", my notation and operations for quantitative reasoning about sets of

artifacts under sets of operating conditions. It should appeal to mechanical

designers who are interested in getting a feel for the system; mathemati-

cally inclined readers may prefer to start with the more rigorous approach of

chapters 4 and 5. Recent work, too incomplete to present here, suggests that

some simplification of the system of labels is possible; these simplifications

will change the details of the inference rules presented in this chapter, but

not the over-all flavor.

Chapter 4 rigorously develops part of the labeled interval calculus, proving

inference rules for single artifacts under varying operating conditions. This

chapter seems likely to endure intact any foreseeable improvements.

Chapter 5 extends the formal development to inferences about sets of

artifacts. This chapter will be most strongly affected by the developments

expected in the near future.

Chapter 6.1 steps back from the technical details to discuss the underlying

ideas at a conceptual level. It uses these ideas to compare my work with some

closely related work.

Chapter 7 places the work in the context of design research, broadly

defined, and speculates on further developments.

Tables A and A at the end of the thesis, lists the key definitions. The

reader is encourage to copy them to keep in view while reading the more

technical sections.

Two further caveats are in order. The notation used in Chapter 3 is a
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little different from that of Chapter 4 and 5, because I wanted to emphasize

different things. The inference rules described are also a little different,

because I've proved some rules the compiler hasn't tested, and tested some

rules I haven't proved.

I have not included a "claim of contributions" chapter, though individual

chapters, especially Chapter 6, point out the differences between my work

and that of others. Instead, I have tried to clearly label the few places I

review previously developed theory; in general, what I have to say here is my

own.



Chapter 2

The Program and its

Performance

2.1 Introduction

This chapter provides a brief overview of the compiler, then examines its

performance in three different respects: 1) the range of design problems it

has been tested on; 2) its reliability; and 3) its efficiency or time complexity.

2.2 Overview of the Compiler

Figure 2.1 illustrates my approach. My data base is built up (block

1) from "basic sets" of artifacts. Each basic set is represented by a single

catalog number. The set consists of the individual artifacts one might receive

by ordering that catalog number. For example, on ordering Dayton motor

16
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3 4.0
2

Form abstra~ct component 4
De sign r' Intent mode

catic D

Specification. Propagate specifications [uZebs ]
cost function

"__________lliminate unsatisfactory

-- caw"lo to d&tWd

Catalog Data

specifications 5
equation. pia slto

Figure 2.1: The Compiler Block Diagram
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number 2N103, we will receive any one of an effectively infinite variety of

motors, each slightly different because of manufacturing tolerances, each with

its own serial number; these motors make up the basic set denoted by catalog

number 2N103.

The basic sets are modeled by an engineer, using equations and specifi-

cations in a special "labeled interval" specification language. For example,

the speed regulating characteristics of Dayton motors 2N103 might be rep-
nly

resented by (A ['1 RPM 1740 1800). This specification tells us that we are

assured (A) that for any motor we might get by ordering number 2N103,

the the RPM will take on only (1j I) values between 1740 and 1800, under

normal loading.

The engineer groups the catalog numbers into a hierarchical structure,

and the compiler abstracts (block 3) the information about the basic mo-

tor sets to form descriptions for higher levels in the hierarchy. For exam-

ple, the next level up might be all the 1800 rpm three-phase motors rep-

resented; these have varying degrees of speed regulation, so the set as a

whole might only guarantee speed regulation between, say, 1700 and 1800

rpm: (A 1"l RPM 1700 1800). Finally, a schematic symbol (Figure 1.1)

represents the whole hierarchy of catalog numbers, and therefore the union

of their basic sets. The motor symbol might initially represent all of the

electric motors listed in the Dayton catalog1 .

The compiler's user, a mechanical designer, composes new designs by

pointing at schematic symbols (block 2). The system automatically makes

I The currently implemented catalogs only include a small subset of the Dayton catalog.
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m ,otors

ac-motors dc-motors

3-phase single-phase

1200 rpm 1800 3600 split-phase

3N461 " ">-...

3N460

3N462

Figure 2.2: A hierarchy of motors

appropriate connections, asking for help if needed to resolve ambiguities;

for example, in adding the first cylinder to the schematic of Figure 2.3, the

compiler would have to ask which valve to attach it to. Having defined such

a design schematic, the user may assign it a symbol of its own, for recall or

use in more complex designs.

The compiler automatically eliminates catalog numbers which are in-

compatible with any implementation of the connected components (block

3). For example, on connecting the motor schematic to one representing

a 220-volt power supply, the system automatically eliminates any 110 volt

motors.

After building the schematic, the user provides specifications. These spec-

ifications describe sets of operating conditions; (R e0-0 speed 0 .2) applied
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Smotors 1= pumps a v  y i d r
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Figure 2.3: A Hydraulic Power Train

to a cylinder means that the speed of the cylinder shaft is "Required" (R)

to take on every value (eY" ) in the interval from 0 to .2 feet per second.

In this example, the maximum output pressure available from any of

the pumps, together with the highest of the range of forces required, sets

a minimum diameter requirement on the cylinders. These, together with

the speeds required, establish flow requirements. This use of equations and

specifications to form new specifications is propagation (block 3); it can be

regarded as a generalization of "the constraint propagation of intervals" [7].

More specifically, the constraint propagation of intervals corresponds to one

of 21 propagation operations employed in the compiler.

The propagated specifications for flow, horsepower, torque, and so on

cause further eliminations, leaving subsets of the original catalog numbers.

Descriptions for these subsets are then abstracted to produce new specifica-

tions, which trigger further propagation and elimination.

When the cycle of abstraction, propagation and elimination ceases, a

variety of alternative combinations of catalog numbers often remains. The

user then provides a cost function, for example the weighted sum of the price
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and weight of the components. He also directs the compiler to split one of the

catalogs in half, for example to look at 3600 and 1800 rpm motors separately

(block 4)2. The compiler then generates two daughter designs, one for each

motor set; the abstraction operators formulate new specifications describing

the new, smaller motor sets. These specifications trigger another cycle of

eliminations.

Repeating this splitting process generates a binary best-first search tree.

The compiler always splits the leaf of the tree offering the lowest possible

cost. The search continues until a single catalog number remained for each

component.

The output of this compiler thus consists primarily of catalog numbers.

Given these numbers and the schematic, most mechanics could probably

buy the components and construct the system without further input from

an engineer. A future, more complete compiler would provide a drawing of

the base-plate. A yet more complete compiler would instruct an automated

manufacturing system to build the design.

2.3 Some Examples

In this section I discuss in general terms my experience with the compiler.

Figure 2.4 shows some component types, with the primary variables used to

model them.

The components models now used include specifications for most of the
2Having the user guide the search in this way improves efficiency; catalogs could be

selected for splitting randomly, or by a heuristic.
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parts variables represented

power type rpm
voltage efficiency
current torque
power

electric motors
torque-out power-out
torque-in power-in
rpm-out efficiency
rpm-in

mechanical transmissions
rpm force
lead critical rpm
speed buckling load

ball screws torque length

diameter flow
pressure speed
force

hydraulic cylinders
rpm displacement
flow total efficiency
power volumetric efficiency
pressure
flow-in valve-coefficient

flow-out flow-return

1[ II[HI[ pressure-out pressure-in

hydraulic valves power-out power-in

power type rpmE:m voltage efficiency
current torque

speed controlled motors power

Figure 2.4: Some test parts
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non-geometric rriteria that the vendors discuss in the "engineering" sections

of their catalogs. Formulating a representation for a component type requires

the engineer to extract a precise model, in my formal specification language,

from the usually vague and often inconsistent catalog data. He must com-

promise between simplicity and completeness. For example, I have chosen to

represent the efficiency of my mechanical transmissions as a range of possible

values, from 90 to 98 percent. I could instead have entered an equation relat-

ing efficiency to speed; manufacturing variations would then be represented

by interval specifications on the coefficients of that equation.

Once the form of the precise model has been determined, a simple pro-

gram can be instructed to translate the manufacturer's catalog into the la-

beled interval specification language. Entering further catalog numbers for

components of this type is then a typing exercise. It generally takes about

one day to decide the form of the specifications and equations for a new

kind of component, generate the transformation procedure that converts the

catalog to the desired form, and test the results.

The system has been tested on a few temperature measurement system

design probiems and more than a dozen different arrangements of power

transmission components. Figure 2.5 shows some of these, with machines in

which the power trains might be used.

Let us now consider in more detail the two-cylinder hydraulic system

example of Figure 2.3. The catalogs for the components shown include the

following numbers of alternatives: 7 types of electrical supply (omitted from

the schematic), 36 motors, 13 pumps, 3 valves, and 12 cylinders. There are

thus 4,245,696 possible combinations; of these, because my catalogs are still
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motor - transmission - rotary-load

Thermocouple

Digital Thermometer

Industrial mixer

Temperature Sensor

~cylinder - load []1 F

motor -pump - cylinder - loadH

Lcylinder - load L____

Hydraulic press

Positioner

speed controlled motor - transmission- ball-screw - load

Figure 2.5: Some test designs
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sparse, only 505,440 remain after the eliminations caused by connecting the

components.

After composing the schematic, the user then enters load specifications,

for example:

Load-i: (R 'e"' speed 0 .2), (R e=2"" force 0 1000)

Load-2: (R 'ery speed 0 .15), (R ..YP force 0 3000).

For the first load, this means that the system must provide every speed from

0 to .2 feet per second, with forces from 0 to 1000 pounds.

The compiler uses these specifications, and those built into the catalogs,

to eliminate unsatisfactory alternatives and to generate further specifications.

For example, the linear horsepower equation is built into the "load" compo-

nent, hp - (jorce)(opeed) = 0. The compiler incorporates an inference rule which550
can be written

(R ev t xh)&(R "tJ-P y Y, yh)&G(x, y, z) = 0

---- ( eR z RANGE(G, (x xX zh), (y YiYh)))

The left hand side of the rule matches the input data and the equation:

(R eIJt speed 0 .2) 'a (Revr Z , Xh)

(R e " force 0 1000) , (R eie" y
hp - (/orct)(.peed}

sso = 0 - g(,' Y, z) = 0.

The RANGE function on the right side of the rule is one of three opera-

tions on equations and intervals discussed in chapters 3 and 4. In effect, it

solves the equation for the hp, forming hp - (Jore)Speed) It then determines550
the range of the horsepower subject to the constraints that force and speed
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are restricted to the intervals [0 1000 and [0 .2]. The numerical results of

RANGE are thus identical to those produced by the "constraint propagation

of intervals". (The other operations discussed in 3 can be thought of as in-

verses to RANGE.) But the new specification which would be formulated by

the right hand side of the rule, (R et?"1I hp 0 .36), is not a "constraint" in the

usual sense of a limit on the values. Rather, it says that the cylinder must

have available to it power flows from 0 to .36 horsepower; higher powers are

acceptable as well.

These specifications eliminate many potential implementations; for ex-

ample, motors unable to supply the required horsepower, adjusted by the

efficiency of the pumps. The designer then splits the catalog for one of the

components, for example one set of cylinders, generating daughter designs.

One daughter design has only large cylinders, the other only small; this starts

a new cycle of abstraction and elimination.

On the particular data given, the compiler searched 71 daughter designs,

generating 15,663 new specifications in the process. The cost function used

was price plus one half weight. The design run took about 20 minutes, a

normal time for the program to complete a hydraulic problem of this size.

Optimization of my code will speed this considerably. The output for this

problem included:

The optimum solution, with cost 441.97, is:

For POWER-SUPPLY, US-3PH-220 with cost 0

For MOTOR, 3N593 with cost 192.72

For GEAR-PUMP, TYPE-103 with cost 133.0
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For VALVE, TYPE-1 with cost 50.0

For CYLINDER, 1.25 with cost 6.25

For VALVE-2, TYPE-1 with cost 50.0

For CYLINDER-2, diameter 2.0 with cost 10.0

2.4 Assessing Program Reliability

I have used basic set theory, predicate calculus, and analysis to develop for-

mal correctness proofs for many of the individual compiler operations; see

chapters 4 and 5. Such proofs add greatly to the reliability of the program,

and to our understanding, but they are no better than the assumptions on

which they rest; the program must still be tested empirically. I have done

dozens of "runs", with varying specifications, on more than a dozen different

arrangements of components. I evaluate these runs by determining why par-

ticular altern-tives are eliminated, and by examining the "optimal solutions"

resulting.

The system appears to eliminate only invalid designs. It frequently sur-

prises me, but I always find either a correctable bug, or that my understand-

ing of the design problem was incomplete.

I am also confident that the designs selected are "optimal" with respect

to the cost function, but my confidence here is based on the simplicity and

clarity of the optimization process rather than on empirical results. Finding

an optimum solution by hand is extremely slow on even these simple design

problems, and no optimization program I know of can easily be set up for

problems of this kind. Even an exhaustive check of combinations of com-
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ponents would still involve sets of operating conditions, hence require most

of the mechanisms of my compiler and not constitute an independent check.

The most I can say, as a human designer, is that the designs produced look

like they could well be optimal.

A subtler question is whether the program eliminates all the implemen-

tations it should-whether its rule set is complete enough to guarantee that

the designs it produces will work. It is not, in three senses. First, I know

that there are propagation operations I have not yet implemented. I imple-

ment operations only as needed, because new operations slow the system and

require testing. Second, as I discuss later, the compiler does not propagate

every specification it could.

Third, and pragmatically most important, the selected design can always

be unsatisfactory because of criteria not represented in my component mod-

els. My formalism imposes restrictions on the criteria it can represent. In

particular, equations must be algebraic, and have three variables, though

intermediate variables can be used to break up complex equations. We must

be able to solve for each variable, and the resulting functions must be con-

tinuous and monotonic. The equations must be "instantaneously true"; they

cannot values which occur at different times. Values must be non-negative.

Specifications must be stated as equations, cost expressions to be minimized,

or "hard-edged" intervals. Finally, variables must be divided into only two

"causal categories"-parameters, which are fixed at manufacturing, and state

variables, which change during operation.

These restrictions limit expressive power. Lack of differential equations

probably prevents the system from compiling servo-system designs, or de-
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tecting vibration problems. Speed controller catalogs often provide ratios

between the highest and lowest controllable speeds, thus relating two differ-

ent operating conditions. An attempt to model automobile seat design failed

because seat-back position is neither a state variable nor a parameter.

Nonetheless, within the domain and problems I have implemented the

system appears to select correct designs. It is at present probably less re-

liable than a very skilled designer working on familiar problems, because

very skilled designers make use of information omitted from the catalogs.

However, it is probably more reliable, faster, and more likely to produce an

optimal design than the average designer.

2.5 Time Complexity

How long does it take to solve these design problems? "About 20 minutes for

a problem involving half a million alternatives" is correct but not very useful,

since this depends mostly on implementation and hardware. What we really

want to know is how the time required to solve the problem increases as the

size of the problem increases.

2.5.1 Theoretical Results

I will consider two measures of the size of the problem. Thc first is the

total number of possible alternatives, where an alternative is a combination

of catalog numbers without regard to feasibility. This is proportional to

C", where n is the numbcr of components in the design, and C the average
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catalog length for each component.

The program searches for an optimal solution by creating a binary search

tree; the forks in the tree are generated by dividing the catalog for a single

component into two parts, splitting the "artifact space". The program then

pursues the "most promising" daughter design. There is no guarantee that

the "most promising" decision will be correct, and unless it is correct most of

the time, back-tracking may require time at least proportional to the number

of alternatives.

The situation grows even worse when I consider my other measure of

size, that is the number of equations involved. The compiler subsumes the

conventional constraint propagation of intervals, and it can be shown [7]

that the constraint propagation of intervals can run forever. For example,

suppose we have two equations, x = y and x = 2y, and we start with intervals

0 < x < 1 and 0 < y < 1. We first conclude from the second equation that

0 < y < .5, then from the first that 0 _< x < .5, then 0 < y < .25 and so on.

We never arrive (barring round-off error) at the solution, x = y = 0.

It may be possible to avoid such pathological cases in real design problems,

but even much simpler forms of constraint propagation can require time

double-exponential in the number of variables involved, and therefore singly

exponential in the number of equations[7].

2.5.2 Empirical Results

Fortunately, my system actually performs much better than the worst case

theoretical projections. In figures 2.6 and 2.7, I have used the number of
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specifications generated by the searching compiler as my measure of time;

this measure is independent of the particular hardware and software imple-

mentation. Most of my operations take time proportional to the number of

specifications generated. One, the elimination of alternatives, can at worst

take time proportional to the number of specifications generated times the

average length of the catalogs.

Figure 2.6 shows a semi-logarithmic plot of the number of specifications

generated against the number of alternatives. At worst, the number of spec-

ifications generated grows according to the logarithm of the number of alter-

natives.

Figure 2.7 shows a plot of the number of equations involved in the design

against the number of specifications generated; growth is no worse than linear

with the number of equations. This, in turn, is linear in the number of

components in the design.

2.5.3 Explaining the difference

There seem to be five principal reasons why the empirical results are so much

better than the worst case predictions.

First, note that eliminating a single catalog number eliminates many al-

ternatives, since that catalog number is involved in a combinatorial set of

alternatives.

Second, the artifact space is organized, for example by horsepower. A

single specification can eliminate many catalog numbers. More importantly,

the optimal solution generally involves the smallest (or nearly the smallest)
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Figure 2.6: Specification generation vs alternatives for a variety of designs
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of the devices meeting the horsepower requirement. Since these are clustered

together in the search space, only a few branches of the search tree need be

followed.

Third, the equations used to describe mechanical components establish a

fairly sparse network between variables. In particular, all information passed

between components is channeled into a small number of "port variables",

such as rpm and torque. (These components have been selected for manufac-

turing and cataloging in part because they have relatively simple connections

with the rest of a design.) This sparseness helps limit the growth in execution

time as a function of the number of equations.

Fourth, some of the propagation operations are correct only if each input

specification is independent of the other variables in the equation used. The

compiler in fact requires independence for all propagation operations, thus

preventing infinite loops of the kind discussed above.

Fifth, I propagate only the "strongest" specifications, for example the

tightest required limits.

These last two reasons involve restrictions on the constraint propagation

process. We have not proven that these restrictions cannot cause failures to

eliminate, but have not observed any such errors in practice.

2.6 Conclusions

To summarize, the compiler has been tested on a range of mechanical and

hydraulic power transmission designs; new designs can be entered by the

designer in seconds. Results have been correct and optimal for the tested
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problems. Time required for solution grows reasonably slowly as the problem

grows. These results are evidence of the utility of the theory outlined in this

thesis.



Chapter 3

The labeled interval calculus

3.1 Introduction

Suppose that we wanted to design a power train for an ice-cream stirrer (Fig-

ure 3.1). I will call this the Toscanini's problem, after a local eatery. Given

a range of acceptable stirring speeds, the torques required, and a catalog, we

might use the transmission input-output equations RPM = (ratio)(RPM,)

and torque. = (ratio)(torquej) to systematically eliminate those transmissions

unable to provide the required speed with the available motors. Then we

might eliminate those motors unable to provide the required torque through

any of the remaining transmissions.

I have several observations to make. First, note that in this example

we think about sets of artifacts (e.g. all Dayton 3-phase motors), rather

than particular artifacts (the motor that fell off the loading dock yesterday).

Because of manufacturing variation, even a single catalog number designates

36
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a set of different physical artifacts, which may or may not be interchangeable

in a particular design. We must also consider sets of operating conditions;

for example, the ice cream maker may be nearly empty, or full of cold Double

Dutch Chocolate. We cannot always assume that the maximum load is the

only one that matters--some electric motors over-heat unless operated at

nearly full load.

Second, torque is a quantitative property, normally expressed in terms

of real numbers. Our reasoning about torque is therefore also quantitative.

However, while the torque at a particular operating condition is normally

represented by a real number, the torques required by the stirrer under all

ice-cream viscosities and fill levels correspond to an interval of real numbers

(say those from 10 to 40 newton-meters.)

Third, the artifact sets are organized, for example by horsepower and

motor speed. We can eliminate large sets simultaneously (e.g. all the motors

of less than 1 horsepower).

Finally, the only mathematical expressions used in the example were al-

Figure 3.1: The Toscanini's Problem
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gebraic equations. Most designers would attack the problem by substituting

single values (say for the largest output torque) into the equations, then

comparing the results with other single values from catalogs. If asked to jus-

tify using calculations on single values to draw conclusions about sets, they

would provide intuitive arguments, in English and specific to the particular

problem being considered.

We might write these intuitions into an "expert system", and that pro-

gram might work well in a sufficiently narrow domain. But a compiler

should give correct results on every design which can be composed from the

schematic elements. It therefore needs a general and precise theory, which

can be closely examined and confidently applied to diverse design problems.

3.1.1 Preview

This chapter introduces a theory for quantitative inference about sets of arti-

facts and operating conditions. The theory provides the basis for a mechani-

cal design compiler which operates by eliminating unsatisfactory alternatives

from catalog sets of artifacts.

I will begin with a brief overview of the compiler. I then introduce some

operations on real number intervals. From intervals, I build up a language of

"labeled-intervals", or "specifications". Then, I illustrate the use of formal

operations on this language to perform quantitative inferences in the solution

of the Toscanini's problem.
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3.2 A design compiler

A user of the compiler creates a design schematic by pointing in sequence

at displayed icons. Each icon represents a computational "object", which

normally includes a list of catalog numbers. Thus, it also represents the set

of real artifacts purchasable by ordering from the catalog. Associated with

each catalog number are specifications in the labeled interval language. Other

specifications automatically abstracted from these, along with equations built

into the schematic object, describe the whole set of artifacts represented by

the icon.

The schematic assembly process establishes an identity between cor-

responding variables for connected components. For example, in the

Toscanini's problem the output torque of the transmission is identified with

the input torque to the stirrer.

Having assembled a schematic, the user supplies specifications in the la-

beled interval language for the most convenient objects, usually loads. The

objects pass each other these specifications, the specifications abstracted from

the artifact sets, and new specifications derived from these by using equa-

tions. The objects eliminate from consideration incompatible artifacts (by

deleting numbers or groups of numbers from the catalog listing), and abstract

new descriptions for the resulting subsets. In the Toscanini's problem, the

user might specify the range of torques required at the stirrer input shaft.

This information, propagated through equations in the the transmission ob-

ject, would eliminate those motors unable to supply enough torque to drive

the load through any of the transmissions under consideration.
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Since the information reaching the motor object is about all the possi-

ble combinations of transmission and load, the compiler does not explicitly

enumerate the alternative combinations of motor and transmission. This

approach may be contrasted with one in which alternatives are generated,

evaluated, and discarded or modified. If we think of the design process as

searching a space of artifacts, my approach works by eliminating volumes of

the space, while the other evaluates designs at points in the space. At any

time during my program's operation, the schematic represents the volume of

the artifact space which has not been eliminated.

This approach has several advantages.

" Manufacturing tolerances and operating condition variations are rep-

resented explicitly.

" The program need not examine each alternative individually.

* Elimination inferences, unlike choice inferences, can be confidently

made from partial information. For example, my program does not

yet contain a representation of geometry, but it can still %tafely elimi-

nate motors providing insufficient torque. It could not safely choose a

motor-it might not be suitable geometrically.

* The inference system has been designed to produce only statements

which are true of each of the objects being considered at the present

stage of compilation. The sets of artifacts considered at later stages

will be subsets of this set, so the statement will still be true of each

artifact. Therefore, statements never need to be withdrawn.
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* The meaning of design representations is often left intuitive; designs

are sometimes said to stand for an "archetype", or a "partially de-

fined object". In contrast, at each stage of the compilation process

my representation stands for a well-defined set of physical objects. I

can therefore evaluate operations by using physical reasoning about the

objects represented before and after a formal operation.

This set-based approach, however, has one significant disadvantage: con-

ventional, single-valued or even "constraint propagating" systems of mathe-

matical inference are inadequate to deal explicitly with sets of artifacts and

operating conditions. I now begin building appropriate inference tools based

on relationships between variables and intervals of real number values.

3.3 Some Operations on Intervals

We need to work with sets of values, for example the torque required to

drive an ice cream stirrer under all load conditions. We might write 0 <

torque < 10 (in our favorite units), or torque E [0 101 but will instead write

(torque 0 10); for now, the reader can assume these statements mean the

same thing.

Using this notation, I will present eight operations on intervals. Because I

am trying to convey a general understanding I will present the operations us-

ing examples, and claim without proof that under appropriate circumstances

the operations are both well defined and computable. For more detail, see

chapters 4 and 5.
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The first five operations used by my design compiler are straightforward,

and are illustrated in the following examples.

" Intersection: n((x 1 4), (x 2 6)) ---+ (x 2 4).

* Not-intersection: gf((x 1 4), (x 2 6)) ---*FALSE.

" Filled-union: U((x 1 4), (x 8 10)) -&(x 1 10).

" Subset: C (( x 10 12), (x 10 14)) --- +TRUE.

• Not-subset: % ((x 10 12), (x 10 14)) -FALSE.

I will call the sixth operation RANGE. RANGE takes an implicit equation

in three variables and a pair of intervals in two of the variables, and returns

the compatible interval in the third variable. More precisely, suppose that

g(z, y, z) = 0 is the implicit equation, and X and Y are intervals in x and y

respectively. Then RANGE(g, X, Y) --- Z, where Z is the minimal interval

such that for every assignment of z E X and y E Y, there is an assignment

of z E Z which satisfies g.

Let us do an example. Suppose that in the Toscanini's Problem, we had

available transmission ratios only from 2 to 4, and we knew that output

torques above 8 would damage the stirrer. Figure 3.2 represents the trans-

mission equation, =i 0, by showing lines of constant output torque.

From the figure we see that regardless of our choice of transmissions, any

motor providing input torque above 4 will induce output torque above 8. We

might reasonably conclude that regardless of our choice of transmission we

should not use any motor producing running torques above 4. The RANGE
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Figure 3.2: An illustration of the RANGE operation

operation produces the appropriate interval:
to

RANGE(ti - - = 0, (t. 0 8), (ratio 2 4))----(t 0 4).
ratio

The RANGE operation is equivalent to what is usually called the con-

straint propagation of inequalities, and has been well explored[7]. However,

it is not the only operation of interest. Suppose that instead of saying that

the stirrer will be damaged by torques above 8, we say that torques ranging

from 0 to 8 may be required to drive it. We shold conclude that we need

motors able to provide torques ranging ranging at least from 0 to 2; see Fig-

ure 3.3. I will call the operation producing this interval DOMAIN; it can be

defined as an inverse of RANGE. For example,

to

DOMAIN(ti - -Lo = 0, (t, 0 8), (ratio 2 4))---(t, 0 2)
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Figure 3.3: An illustration of the DOMAIN operation

precisely because

RANGE(ti -- =0, (t, 02), (ratio24))---+(t. 08).
ratio

Finally, I define the eighth operation, SUFFICIENT-POINTS, as another

sort of inverse to RANGE. Suppose in the Toscanini's problem we knew that

we had available only motor torques up to 2, and we needed stirrer torques

up to 8. Looking at Figure 3.4 we would conclude that any transmission

ratio of 4 or above would do. That is,
SUFPT(t, - = 0, (t, 0 8), (t, 0 2)) --- +(ratio 4 oo)

ratio

because for all ratios in [4 oo], the RANGE of the ratio and the input torque

includes the output torque. For example, a ratio of 5 would give the output

torque interval 0 to 10, which includes the desired interval, 0 to 8.
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Figure 3.4: An illustration of the SUFFICIENT-POINTS operation

All of the operations presented are sometimes useful in design, but when

should we use each one? In these examples we used our experience as de-

signers to decide which operation would produce the desired interval. In a

formal system, we need to build the information guiding those decisions into

the specifications themselves. I will call these augmented interval statements

labeled intervals.

3.4 The labeled interval specification lan-

guage

I will return to the examples of the previous section, but first introduce the

language of labeled intervals using an even simpler design problem-selecting

one of a set of motors to be connected directly to a load (Figure 3.5).
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Figure 3.5: A very simple power train

3.4.1 Limits and operating regions

Suppose that we know that each of some set of motors can produce torques

throughout the interval 0 to 20, but that damage may result to the load if the

torque goes above 10. We want to eliminate these motors from consideration.

Given only the intervals ((t 0 20), (t 0 10)) a program would not have enough

information to specify what operation to use. For example, if the larger

interval applied to the load and the smaller to the motors, we would not

eliminate the motors. We can attach the information required using the

following labels.

The Limits label, symbolized by [' , indicates that values of the variable

will or must be drawn only from the interval. Thus, (0[ 1 t 0 10) means that

the torque must not reverse or go above 10. Similarly, the tolerance on a

bearing inner diameter can be expressed as (0 d, 2.99 3.01).

The Operating-Region label, symbolized by "=71, indicates that the

variable will or must assume every value in the interval; ('#"Y t 0 20) indi-

cates that the motor torque can at least range from 0 to 20 (and perhaps

beyond.)

I will later define a rule which eliminates these motors because, for the

variable t, the operating-region interval is not a subset of the limit interval.
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3.4.2 Required, Assured, and No-stronger labels

Suppose that in our motor-load example we want the load speed to be regu-

lated to between 1750 and 1800 rpm. We introduce a Required (R) interval

label, meaning that the statement must be true for proper function. For the

load, we can write (R [' RPM 1750 1800).

Suppose further that some catalog number designates a set of high-slip

motors, capable of regulating the speed only well enough to keep it between

1725 and 1800. I introduce the No-stronger-possible (N) label, and write

for the high slip motors (N ('I RPM 1725 1800). By this I mean that we

cannot specify any subset of these motors which guarantees stronger limits.

(Because of manufacturing variation, some of them probably do guarantee

better speed regulation, but we cannot, within the framework given, select

these.) I will define a rule which eliminates these motors because the No-

stronger-possible limit interval for RPM is not a subset of the Required limit

interval.

The final label in this class is Assured (A), indicating that we are sure

a particular statement will be true for all the artifacts represented (un-

der appropriate conditions). Thus for our high slip motors, we have also

(A 0(n) RPM 1725 1800).

We have illustrated the Assured, Required, and No-stronger-possible la-

bels only in conjunction with the Limit ([n ) label, but they can be defined

comparably in conjunction with the Operating-Range (6 ""P) label.

Labeled interval descriptions are models of artifact sets, and we can

choose the level of abstraction of the model. For example, there is a torque
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curve for each motor type, which would allow more accurate prediction of

the speed regulation based on the possible torques. If we chose to include

the torque curve in our describing equations, we would apply labeled interval

specifications to the equation's coefficients.

In addition to the labels defined above, I designate each quantity as either

a state variable or a parameter. Parameters, such as gear ratio, are fixed

at manufacture, while state variables like torque may vary during operation.

Each labeled interval pertains only to a specified set of operating condi-

tions such as start-up or normal operating conditions. I will assume "normal

operating conditions" throughout this paper.

3.5 Operations on Labeled Intervals

The key activities of my compiler can be specified by three groups of formal

operations on labeled intervals: elimination, abstraction, and specification

propagation.

3.5.1 Elimination

These operations eliminate artifact sets whose labeled interval specifications

conflict with the specifications imposed by the user or by other parts of the

design.

I represent these operations using patterns. Suppose that for our motor-

load power train we have the same speed regulation requirement as above:

(R F"'l RPM 1750 1800). We want to eliminate motors with weaker speed
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regulation, say (N f ] RPM 1725 1800). These two specifications match the

pattern

(N FnI X x, x1 ) % (R onlY X xt x)-,) eliminate,

with X taken to be the RPM and xt and x,, the lower and upper bounds of

the corresponding intervals.

Since the No-stronger-possible specification is not a subset of the Required

specification, the program removes the relevant catalog numbers from the

associated list.

eerynly((R. A) x ...) % ((R A)[ 101 ...)
only only((R A) x 1... ) 9(((R A) [ I x...)

ond1  ordy
(N[ ]OnI...)Z ((R A)[ ]ot' ... )

((R A) e x...) % (N erpr ....)

Table 3.1: Elimination patterns

All my elimination patterns are shown in Table 3.1 (with the arrow and

the word "eliminate" omitted for brevity). When the list "(R A)" appears

in a pattern, it can be matched against either a Required or an Assured

statement.

3.5.2 Abstraction

In the Toscanini's problem, we want to evaluate motor alternatives with

respect to the set of all transmissions under consideration. Therefore, we

need a set of specifications which describe all the transmissions. The program
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abstracts these specifications from the previously encoded descriptions of

the individual "catalog number" subsets.

The program uses either the intersection or the filled-union operation

to combine the intervals associated with a given variable and pair of labels

in each subset. For assured limits it uses the filled-union operation, so for

example it combines (A [0 1 RPM150 1200) and (A 0"I' RPM 1750 1800) to

form (A 0["1 RPM 1150 1800). There are six types of labeled interval defined

by combining the two label sets (Assured, Required, No-stronger-possible)

and (Limit, Operating-Region). Table 3.2 shows the operation appropriate

for combining each type of labeled interval.

interval type operation

(A e.# ) n

(A 01ay) U

(RelJ :) n
(R 01' U

(N e"*) U

(N j['d) n

Table 3.2: Abstraction operations

3.5.3 Propagating Labeled Intervals Using Equations

I turn now to a more complex question: how can we propagate labeled inter-

vals through equations, so that, for example, the torque requirements for the

ice cream stirrers can be converted into torque requirements for the motors?
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I introduce two operations on labeled intervals and equations.

The first is represented by the following pattern:

((R A)( ] v) & ((R A)[ " ]v 2 ) &g(v 1 ,v 2,v 3 )= 0
only

-- ((RubA) ]v 3 RANGE).

The labeled interval patterns to the left of the arrow are matched with

potential inputs to the operation, while the pattern to the right of the arrow

defines the form of the output. The "g(v, v2 , v3 ) = 0" matches equations

linking the two input variables and the output variable. The "(R A)" in

the input patterns again indicate that the operation is appropriate for either

Required or Assured statements. The "(RubA)" in the output indicates that

the output will be Required unless both inputs are Assured, in which case it

will be Assured. Finally, the "RANGE" in the output pattern indicates that

the numeric values are to be found by applying the RANGE operation to the

input values.

Suppose again that in the Toscanini's Problem, we have available trans-

mission ratios only from 2 to 4, and we know that torques above 10 would

damage the stirrer. The specifications match our pattern:

onld rd

(R [ay jt 0 10) ~((R A)t Itly)i)(A [" ]ratio 24) ~ ((R A) ['I v2)

- = t 0 -- g(vI, v2, 3) = 0.

This justifies applying the RANGE operation to form (R [n"' ti 0 5). The

elimination operations will use this new specification to eliminate any motor

producing torques above 5.
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The second operation is represented by the pattern

every/
((R A) &"A? Si) & ((R A) []P2) & g(SP2, 3) = 0

((RubA) . y S3 DOMAIN).

Reading the pattern, we see that the first input must be an operating-

region interval and the second a limit. The first input and the output vari-

ables must be state variables, while the second input variable must be a

parameter. The output interval is formed by applying the DOMAIN opera-

tion to the input intervals. The (RubA) rule is applied again. The idea is

that if we need a state variable to take on every value in a certain operating-

region, and we have some limited choices of parameters in the equation, then

the other state variable must take on values over a sufficiently large interval

to satisfy the equation with at least one of the parameters available. If we

need torques up to 8 to drive the stirrer, we can match the specifications

with the pattern:

(R 4-0 t 0 8) ~((R A) " ' si)

(A[ 0 ratio24) - ((RA) J']p)

r--o - t = 0 - g(vI,v2, 3) = 0.

We therefore apply the DOMAIN operation to form (R ."7' tj 0 2); the

motors are required to supply torques throughout the operating-region from

0 to 2. Note that this specification does not imply that the input torque tj

can never be greater than 2, but rather that all motors considered must be

able to supply torques of at least 2. If at some point the transmissions of

ratio 4 are eliminated from consideration, a new labeled interval requiring

higher t, will be generated.
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Table 3.3 shows all the propagation operations. Symbols representing the

associated equations are omitted for brevity. The list "(p s)" may be matched

against either a parameter or a state variable. The T and I operations, given

intervals in a variable, extend the variable upward to infinity or downward

to zero respectively. The "'.' label indicates that the variable must take on

at least one value in the interval; see Chapter 4 for details.

3.6 Conclusion

What have I done here?

" Provided an explicit and compositional high level language in which

designers can define new systems and problems. Formal operations

on this language automatically transform high-level descriptions into

detailed descriptions.

" Used design descriptions to explicitly represent sets of artifacts and op-

erating conditions, rather than a single or "archetypical" artifact under

a single operating condition.

" Conducted optimizing search by progressively narrowing volumes of the

artifact space, rather than searching from point to point in that space.

" Added the DOMAIN and SUFFICIENT-POINTS operations on intervals

to the RANGE constraint-propagating operation.

" Added the Operating Region interpretation of intervals to the Limit

interpretation.
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* Divided specification statements into those which are true of all the

artifacts represented (Assured), those which must be true of the final

design (Required), and those which may or may not be true but which

cannot be strengthened (No-stronger-possible).

* Divided variables into "causality classes" (parameters vs state-

variables).

These concepts are sufficient to support design compilation over much of

the power transmission system domain; chapters 4 and 5 place them on a

formal footing, extend them somewhat, and prove the validity of many of

the inferences.
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(A every si) & (A 3 82) -- *(A ' ry 83 RANGE)

(R si) & (R everyP 82) S 3 RANGE)

(N evey sI) & (N St, 82) -(N 3 RANGE)
onlyonly only

((R A) [ (p1 8)) & ((R A) (P2 82)) -- ((RubA) i (p3 s3) RANGE)
every only -((R A) every i) & ((R A) 0(p 2)) --- +((RubA) every 83 DOMAIN)

((RA) etety1) sl ((RA) I 182) -- (R[ ]p 3 SUFPT)
every ~nlyevr

(N ,, 81) & (N 1 ] p2) -- +(N e-Jry 83 DOMAIN)

(N e+#y si) & ((A R) ("'I (p2 82)) -(N e, p 83 RANGE)
evrynli n1"

(A . s,) & (N ]p) --- (N [ 13 RANGE)
only

(R " - i S) & (N eve-" 82) ---.(R[ P3 SUFPT)
(R "v si) & (N "v 82) ----+(R ,v 83 DOMAIN)

onnly
(N o~"] (p, si)) & ((A R) F'I(p2 82)) -. (IN ( I (P3 S3) DOMAIN)

(R ["I ) & (N o ] ) -- (R S3 83 DOMAIN)
every ~nlyevr

(R '~ s,) & (N '[Ipa) (R evr s3 RANGE)

((R A) CtJ Si) & ((R A) [ (p2 82)) -- ((RubA) n S3 SUFPT)
((R A) ever 81) & (N e4er 82) -- ((RubA) *ome 83 SUFPT)
((R A) evy si) & ((R A) ,ome 82)

--* (RubA) e 3 (DOMAIN(8 1,8 2 ) nDOMAIN(T (SI),02))

U
(DOMAIN(,l,,2) nDOMAIN(j (90),2)))

((R A) ey) & ((R A) ... S2)

-- i((RubA) ,o.e 83 (SUFPT(81,, 2 ) nSUFPT(T (31),32))

U
(SUFPT(8I,82) nSUFPT(J (81),32)))

((R A) (1,'y so'e) (p, 81)) & ((R A) ,oe 2) -- ((RubA),e S3 RANGE)

((R A) (O[,lY 'Oe ) (pi Si)) & ((R A) oe 82) -- ((RubA) [ ]p3 RANGE)

((R A) , s1) & (N to I P2) --- +((RubA) ,Om, 3 DOMAIN)

Table 3.3: Inference patterns using equations.



Chapter 4

Extending Constraint

Propagation

4.1 Introduction

"Constraint propagation" is often thought to be a key element in design [5, 8,

2, 9, 10, 11, 4, 12, 13, 14], hardware debugging [15] and spatial reasoning [71.

Intervals are among the most general constraints propagated; for example,

given y = 2x and 1 < x < 2, one concludes 2 < y _5 4. The meaning and

validity of this inference seem intuitively clear, and research attention has

generally focused on its computational characteristics.

In fact, I show in this chapter that the meaning of these statements and

the validity of this inference, as applied to physical objects, require more

attention. More precisely, the statement 1 < x < 2 can be considered a

relationship between a variable name, an interval of values, and the permis-

56
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sible states of the physical object being described. Reasoning about physical

objects can involve at least four different kinds of such relationships. Fur-

ther, the inference shown exemplifies only one of three useful computations

on equations and intervals; each of the three performs correct inferences only

for appropriate interval-variable relationships.

I begin with an example demonstrating the utility of three kinds of inter-

val propagation, then introduce four "labels" for interval-variable relation-

ships. The bulk of this chapter defines a variety of piopttgation inferences,

and uses basic set theory, predicate calculus, and analysis to prove their cor-

rectness. I conclude with an informal discussion of some issues arising in the

application of these ideas to the "mechanical design compiler".

4.1.1 An Example

Figure 4.1 shows graphically the governing equation, t0 = rti, for an ideal

variable-speed mechanical transmission; here t. and ti are the output and

input torques, and r is the continuously variable "transmission ratio". I use

this equation to illustrate three different inferences.

Case A: Suppose that the transmission ratio is limited to the interval

from 2 to 4, and that if the output torque goes above 8 or falls to less than

1, it will damage the attached load. This seems clear enough: 2 < r < 4,

and 1 :< t. _< 8. We want to pick motors which cannot damage the load,

and conclude that the input or motor torque must fall in the interval A,

from 0.25 to 4; 0.25 < ti _< 4. This is the usual notion of interval constraint

propagation.
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ti 5
4t

S3 15

T7 8
B 1 4

0 t-- ' 1
02 3 4 5

I.*- C -0-1

Figure 4.1: Inferences on a Mechanical Transmission

Case B: In contrast, suppose that under the expected operating condi-

tions the output torque must vary throughout the interval from 1 to 8 in

order to drive the load. Note that we are not saying that the output torque

is limited to the interval from 1 to 8; this interval means something else.

With the same limits as in case A on the transmission ratio, we conclude

that the motor torque must at least vary over the interval B, that is from

0.5 to 2, or the motor will fail to drive some load. This can't be "interval

constraint propagation", since it gives different results on the same equation

and intervals.

Case C: Now suppose that the transmission ratio is unknown, that the

output torque must vary from 1 to 8 as in case B, and that the input torque

is limited to the interval from 0.25 to 4. We conclude that the transmission
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must under some operating condition take on at least one s'alue in the interval

from 2 to 4, interval C; otherwise, at least one of the required output torques

would be unattainable. "Interval constraint propagation" on 0.25 < ti < 4

and 1 5 t. _< 8 would give the 0.25 < r < 32. I will show later that

this inference differs from that of Case B as well. Further, the ratio is not

limited to the interval from 2 to 4, nor is it required to take on every value

in this interval; this interval means something different still from those we

have previously encountered.

The transmission equation relates single assignments of values to vari-

ables. However, in each case, we used the equation to draw a conclusion

about the set of values a variable could or should take on. Design is a nat-

ural area of application for such reasoning, because the designer must take

into account the full variety of conditions under which his design must oper-

ate. Mechanical designers are in fact comfortable with the reasoning of the

example, but if asked to justify it can provide only intuitive arguments. I will

formalize these arguments, beginning by clarifying the possible relationships

between variables, the states of an artLLct, and intervals of values.

4.1.2 Assignment Intervals, and Equations

Let us suppose ourselves to be discussing an object of some sort. We describe

this object using a set of variable names, and suppose that it can take on

various permissible states; each state assigns each variable a value from

the real number line.

We need some notation. I will use S to symbolize the set of permissible
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states, and a for an element of S. I will write X = (x 0 2) to mean the

set of assignments of values in the interval [0 2] to the variable x; x E X

to mean such an assignment; and x(s) to mean the function from states to

assignments of the variable x.

Assignments inherit from the real numbers such relations as <,=, and

infimum, in the obvious way. We can therefore refer to "intervals of assign-

ments". If X is such an interval, then by xi I will always mean rin(X) and

by .;-, max(X). I will allow intervals to be infinite, e.g. (z 2 oo), but defer

until the last section discussion of the implications of such intervals.

I can now introduce four kinds of statement about objects, their sets

of permissible states, and intervals of assignments. I distinguish these by

labeling the intervals, as in (label x x, xA), or just (label X), and refer to

them as labeled intervals. (The definitions are repeated in the table at the

back of the thesis.)

Definition 4.1 ([, 1X) 44 Vs E S, 3x E X.x(s) = x

That is, the permissible states assign values to x only from X; this is

the interpretation given all three intervals in case A of the example. This

statement is actually a predicate on objects and sets of states, and could be
only1

written [ X)(object, S), but as we are considering only a single object and

set of states I will leave them implicit.

Definition 4.2 (tP X) " Vx E X, 3s E S.x(s) = x

That is, for every assignment in X, there exists a permissible state of the

object making the assignment. This is the interpretation given both torque

intervals in Case B.
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Definition 4.3 (. X) .4 33 E S.3x E X.x(s) = x

That is, there exists some assignment x in X and state s in S such that s

makes the assignment x. Here we have the interpretation given the trans-

mission ratio interval in case C.

Definition 4.4 (Ve X) 44 Vs E S.x(a) V X

That is, there is no state s E S such that s makes any assignment in X.

As an exception to my normal custom, I here interpret X to be an open

interval. If (Ml X) and X is semi-infinite, then we have (o' X), where

is the complement of X.

I will interpret equations describing the object as predicates on the per-

missible states of the the object. More precisely, if the object is described us-

ing the equation G(z, y, z) = 0, then fur every s E S, G(x(a), y(s), z(a)) = 0.

I impose tight restrictions on equations, and will discuss in section 4.3

how these restrictions can be accommodated or loosened in practice. First,

each equation must be implicit, and in three variables. (If we need equations

of more than three variables to describe an object, we can use intermediate

variables to convert them into systems of equations.) Second, over the do-

main of interest the equations must satisfy the uniqueness property; that is,

if G(xo, yo, z1) = 0 and G(xo, yo, z2 ) = 0, then zi = z 2, and so on for permuta-

tions of variable names. Third, the domains of interest must be compatible;

that is, for any permissible values of z, y there must be a permissible value

of z satisfying the equation.
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These constraints are sufficient to guarantee that the equation can be

solved for each of the three variables, and that the resulting functions are

strictly monotonic1 . Finally, I require that these functions be continuous.

Given G(x, y, z), I will write g(x, y) to mean the associated function from

assignments in x and y to assignments in z.

4.2 Interval Operations and Inferences

I can now formalize three operations on intervals and equations, asking for

which permutations of labeled intervals they perform correct inferences.

4.2.1 Conventional Constraint Propagation

I introduce first the operation used in the introduction's Case A.

Definition 4.5 RANGE(G, X, Y) = {z3x E X,3y E Y.G(x,y,z) = }

That is, the RANGE of the equation G with respect to the intervals of as-

signment X, Y is the set of assignments to the variable z such that there

exist assignments in X and Y satisfying G(x, y, z) = 0. This is simply the

usual image of X, Y under g(x, y). The continuity of g(x, y) ensures that
1 By strictly monotonic, for these functions of two variables, I mean that if Z < Z2 and

9(zI, YI) < 9(z 2 , YI), then for all z > Zi, g(z, yo) > g(z 1 , yo), and so on for permutations

of variable names. It can be shown for these equations that if these inequalities hold, and

j < y2 and g(z,pl) < (z 1 ,I), then for all z > z, y> yi, g(z,p) > g(zl, y). Note

that the transmission equation is strictly monotonic only over the positive reals.
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Z is an interval. Trivially, RANGE is commutative in the intervals; that is,

RANGE(G, X, Y) = RANGE(G, Y, X).

Recall that by x and xh we mean win(X) and max(X) respectively; then

to compute RANGE we use:

Definition 4.6

CORNERS(G, X, Y) = {g(xI, Yi), g(Xh, Ye), g(xi, Yh), g(Xh, Yh)}"

This leads to

Lemma 4.1 RANGE(G, X, Y) = Z

= [min(CORNERS(G, X, Y)) max(CORNERS(G, X, Y))].

Further, if zs = min(Z) = g(xj, yj), and zh = g(xj, y 2), with Y,, Y2 E Y,

then {x,, xj} = {x, x,}.

The idea is that the maximum and minimum of a monotonic function

over a pair of intervals occur at the endpoints of the intervals; further, they

occur at different endpoints. The lemma of course holds for permutations

of the variable names. The proof follows easily from the monotonicity and

continuity of g(x, y).

For which combinations of labeled intervals does the RANGE operation

produce correct inferences? I begin with the most obvious.

onlt, oniyoi
Rule 4.1 ([" X)&([ v Y)&G(z,y,z) = 0---(I'n RANGE(G, X, Y))

That is, if for every permissible state G(x, y, z) = 0 is satisfied, x(s) is in

X and y(s) is in Y, then z(a) is in the image of X, Y under g(x, y).
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This rule expresses the inference of Case A. Recall that the output torque
onl

of the transmission should not go above 8 or below 1; ([ ] to 1 8). The trans-

mission ratio could not go below 2 or above 4; (o, I r 2 4). These, with the

equation to = rti, match the antecedents of Rule 4.1. The CORNERS opera-

tion substitutes the endpoints of these intervals into k, returning assignments

to t, of {0.5, 0.25,4, 2}; and the RANGE operation extracts the maximum and

the minimum to form (o[ ti 0.25 4), the limits on the input torque.

We also have

Rule 4.2 ([') X)&( °.*e Y)&G(x, y, z) = 0-("O.- RANGE(G, X, Y))

Proof: By the definition of o..e, there is some s E S such that y(s) E Y,

and by the definition of 0,, x(s) is certainly in X. Then z(s) = g(x(s), y(s))

is in RANGE(G, X, Y), so (,o'!' RANGE(G, X, Y)) is satisfied.

In contrast, the possible rule

(.o.e X)&(o.e Y)&G(x, y, z) - 0-.." RANGE(G, X, Y))

is invalid, because the assignment in X and the assignment in Y need not oc-

cur simultaneously. Consider, for example, the labeled intervals (s0.'.e x 2 3),
(so e y 1 4), and equation xy - z = 0, and the following consistent and com-

plete set of states:

State x y z

s1 2.5 0 0

S2 0 2 0

The rule would incorrectly imply (o.. Z 2 12). The same objection ap-

plies to the possible rule, (,*T X)&(eY y)_.(°.! RANGE(G, X, Y)).
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The possible rule

('Dn' X)&('0e Y)&G(x,y,z) = O- Me' RANGE(G,X,Y))

is also invalid. Consider an object described only by (' x x 2 3),
M y 1 4), zy - z = 0. Then a state assigning x = 1,y = 6,z = 6 is per-

missible, and (04 Z 2 12) is false. However, let us divide the complement

of X into two intervals, 71 = {xlx < min(X)}, and Yh = {xlx > max(X)}.

Then, using the symbol ® for RANGE, we have

Rule 4.3 (fl" X)&( We Y)&G(x, y, z)

The intuition for this rather forbidding expression is that since x and y

can't be in X and Y, they must be in overlineX and ; these complements

can be divided into two intervals each; and z must be in the RANGE of one

pair of such complement intervals. Hence, z cannot be in the intersection of

the complements of those RANGEs. We might suppose that we could label
onlythe union of the RANGEs with a [ 1 label, but in fact that union is not an

interval. The intersection of the complements is an interval, because: ]7, '

7, and W are semi-infinite intervals, the RANGEs of the pairs are also semi-

infinite intervals, the complements of the RANGEs are semi-infinite intervals,

and the intersection of intervals is an interval.

The formal proof of Rule 4.3 is simple. Let the consequent interval

equal Z, and suppose there is some s E S such that z(s) E Z. By the

antecedents, x(s) E Tj and y(s) E Yk, for j and k in {h,l}. But then z(s)

is in RANGE(G,XYj,VTk), contrary to the definition of Z.
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For the final rule of this section, we need:

Definition 4.7 INDEPENDENT(X, Y, S) if and only if for any x E X such

that x = x(sl) and y E Y such that y = y(s2), with s, and S2 in S, then

there is an s E S such that x(s) = x and y(s) = y.

As usual, we will often leave S implicit.

If for every pair x, y in X x Y there is a state making these assignments,

and G is true in every state, then there is a state making every assignment

in {zI x E X, 3y E Y.G(x, y, z) = 0}. We therefore have:

Rule 4.4 INDEPENDENT(X, Y)&(everv X)&(ev.=" Y)&G(x, y, z) = 0
__,e, er RANGE(GX, Y)).

4.2.2 The DOMAIN Operation

I turn now to case B of the introduction, and define a partial inverse of

RANGE. That is,

Definition 4.8 DOMAIN(G, Z, X) = Y 44 RANGE(G, Y, X) = Z

DOMAIN is partial because for some G, Z, X there is no assignment interval

Y satisfying this definition; the computation process given below readily

identifies such cases. The following rules apply only when such a Y exists.

Because RANGE is commutative with respect to its interval arguments,

DoMAIN(G, Z, X) = Y implies DOMAIN(G, Z, Y) = X.

DOMAIN has an equivalent direct definition.

Lemma 4.2 DOMAIN(G, Z, X) = {yIVx E X, 3z E Z.G(x, y, z) = 0}
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Proof: Let DOMAIN(G,Z,X) = Y, and Y' = {yJVx E X, 3z E

Z.G(x,y,z) = 0}; we must show that Y = Y'. Suppose Yo E Y. By

the compatibility property, for every x E X, there exists some zo such that

G(x, Yo, zo) = 0. But by the definition of DOMAIN, RANGE(G,X,Y) = Z, and

by the definition of RANGE, Z = {zj3x E X, 3y E Y.G(x, y, z) = 0}, hence

zo is in Z; that is, for every x E X there is a zo E Z such that G(x, Yo, zo) = 0.

yo then satisfies Vx E X, 3z E Z.G(x, Yo, z) = 0, and Yo E Y'.

To show that each point of Y' is in Y, we show first that the endpoints

of Y' are in Y. Let y = min(Y'), and let g(x, y) = z1, g(xh, Y) = z2 ; by

the definition of Y', z, and z2 are in Z.

At least one of z1 , z2 must be an endpoint of Z. To prove this, we assume

the converse, z, < zi < zh, and zt < z 2 < zh. Since g(x, y) is continuous and

monotonic, we can choose some point y' <y , but sufficiently close to y' that

z1 < g(x, y') < Zh and zi < g(xh, y') < zh. But then, by the monotonicity

of g(x,y) with respect to x, z = g(x,y') E Z for all x E X, and by the

definition of Y', y' E Y. This contradicts the definition of y as min(Y');

hence, the assumption is false, and at least one of z1 , z2 is an endpoint of Z.

Let Zk designate the element of {zI, z2 } which is an endpoint of Z, and let

xj designate the corresponding element of {x, xh}; that is, g(xi, y') = zk.

By lemma 4.1, g(x, y,,) = Zk for some y,,, E {y1, yh}; by the uniqueness

property of G, y' = y,m.

We can use symmetrical reasoning to conclude that yh is also an endpoint

of Y, then use Lemma 1 again to conclude that they are different endpoints

(unless Y is a single point). Y is an interval by definition (RANGEis defined

only on interval inputs), so all the assignments between y and y are also
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in Y, and Y' = Y.

To compute DOMAIN, we rely on:

Lemma 4.3

If DOMAIN(G, Z, X) = Y, then Yi = min(Y) and yh = max(Y) are in

CORNERS(g, Z, X).

Proof: RANGE(G, X, Y) = Z, so by lemma 4.1 zj and zh are in

CORNERS(G, X, Y). Thus, for some values i and j in {1, h}, g(xi, y) = zj.

But then by the uniqueness property of G, g(x,, zj) = Yl, so Yj is in

CORNERS(G, Z, X). Identical reasoning applies to Yh.

We can therefore compute DOMAIN(G, Z, X) by generating each possible

Y = (Y Y1 Y2) where Y1,Y2 E CORNERS(G, Z, X) and yi < Y2, then testing

whether RANGE(G, X, Yt) = Z.

To formulate our next rule, we need one more definition.

Definition 4.9 Let x(. 1) < x < x(s 2) for some Si, 82 E S; if and only

it this implies that there exists some s E S such that x = x(s), then x is

STATE-CONTINUOUS.

We then have

Rule 4.5 (e"-'Y Z)&((o X)&G(x,y,z) = 0&STATE-CONTINUOUS(y)

, ("tP DOMAIN(G, Z, X))

Proof: " and are either positive or negative throughout the domain.

There are four permutations of these signs; I consider one in detail. Through-

out, let Y = DOMAIN(G, Z, X). The idea is to show that there must be states

making assignments of y on either side of Y.
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Suppose 2 < 0, and 8' < 0. Combining this with the definition of

DOMAIN and lemma 4.1 we have g(xh,Yh) = zi. By the first antecedent

of the rule we can choose si E S such that z(si) = zj. By the second

antecedent, x(st) E X, so x(s) :5 xh. Recall that G(x(s),y(s),z(s)) = 0

for all s E S, hence by the uniqueness property of G, g(x(sj), y(st)) = z(s).

Now, assume that y(sl) < Yh; by the assumed signs of the partial derivatives,

z(st) = g(x(s,),y(st)) > g(x(st),yh) > g(xh, yh) = z(s1 ). The assumption

must be invalid, and y(s') > yh.

Symmetrical reasoning leads to the conclusion that there is some Sh E S

such that y(sh) < yl" Then, by the STATE-CONTINUOUS assumption, for

each y E [y(sh) y(st)] ;? Y, there is an a E S such that y(s) = y.

Rule 4.5 performs the inference of case B. Recall that we kept the limit
ordy

specification on the ratio, (0( 1 r 2 4), but changed the output torque spec-

ification to require that the output torque take on every value in the inter-

val: (" "v t. 1 8). The input torque is STATE-CONTINUOUS. The CORNERS

operation again substitutes the endpoints of these intervals into !, return-

ing {0.5,0.25,4,2}. DOMAIN picks out (e!' t, 0.5 2) by substituting into

to = rti and checking the result against (t. 1 8); 1 = (.5)(2) and 8 = (2)(4).

The STATE-CONTINUOUS assumption is physically significant. Suppose

for our transmission we had (er" to 6 12), and (ti 2 3). Rule 4.5 gives
(eiri r 3 4), which is correct for our variable speed transmission. However,

the requirements could be satisfied with a two-speed geared transmission

with ratios 2.9 and 4.1.



CHAPTER 4. EXTENDING CONSTRAINT PROPAGATION 70

Nothing in this section proves the existence of DOMAIN(G, Z, X), and

indeed this set may not exist. In Case C, for example, there is no set R of

assignments to the ratio r such that RANGE(to - rti = 0, (ti 0.25 4), R) =

(to 1 8). In this case, however, we can apply the next operation.

4.2.3 The Sufficient-Points Operation

Let us begin by extending RANGE to operate on an interval and a point (of

assignment), defining RANGE(G, Y, xo) = RANGE(G, Y, [xo xo]). Then the

SUFFICIENT-POINTS operation is defined by

Definition 4.10 SuFPT(G, Z, X) = {yIZ C RANGE(G, X, y)}

I need to show that if Y = {yJZ 9 RANGE(G, X, y)} exists it is an

interval; that is, if Yi < Y2 < Y3 , and Yl,Y3 E Y, then Y2 E Y. Consider

first the case where 2 < 0. Since Z C RANGE(G,X, y,) we can find some

xi E X such that g(xj, y1 ) _< z1 . Then, g(xj, y2) < zt. Alternatively, if

a' > 0, find x, such that g(x,,y 3 ) < zj, and again g(xi,y 2) < zj. By

symmetrical arguments there is also some xi E X such that g(x,, y2 ) > zh.

Thus, Z C RANGE(G, X, y2), and Y2 E Y.

There is an equivalent direct definition of SUFPT.

Lemma 4.4 SuFPT(G, Z, X) = {yIVz E Z, 3x E X.G(x, y, z) = 0}

Proof: Let SUFPT(G, Z, X) = Y, and Y' = {yJVz E Z, 3x E

X.G(x,y,z) = 0}; we need to show that Y = Y'. If Yo E Y, let Zo =

RANGE(G, X, Yo) = {zi 3x E X.G(x, yo, z) = 0}. But by the definition of Y
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and SUFPT, Zo is a superset of Z, so certainly Vz E Z, 3x E X.G(x, yo, z) =

0, and Y0 E Y'. Conversely, if Yo E Y', then Vz E Z, 3x E X.G(x, y0 , z) = 0;

but then Z is a subset of {zI3x E X.G(x, yo, z) = 0} = RANGE(G, X, Yo),

so Yo E Y.

It follows immediately from lemmas 4.4 and 4.2 that SUFPT(G, Z, X) =

DOMAIN(G,X,Z). This in turn implies that if SUFPT(G,Z,X) = Y,

then Y, and yh are in CORNERS(G, Z, X). Accordingly, as with DOMAIN,

we can calculate SUFFICIENT-POINTS by testing various combinations of

CORNERS(G, Z, X).

I consider two inferences using SUFFICIENT-POINTS. First,

only
Rule 4.6 (*%Y" Z)&((o I X)&G(x, y, z) = 0&STATE-CONTINUOUS(y)

....(ao.e SUFPT(G, Z, X))

Proof: Let SUFPT(G, Z, X) = Y, and , = {yJy < min(Y)}. For y E FT,

at least one endpoint Zk of Z is such that G(x, y, Zk) # 0 for any y E Vi, x E

X. By the first antecedent, there is an a, E S such that z(s1 ) = zk, and by

the second, x(sl) is in X, so y(s) must be greater than max(V'); thus, there

is an sj E S such that y(s1 ) _ min(Y). By a symmetrical argument, there

is an 32 E S such that y(s 2 ) max(Y). Either at least one of y(sI), y(s 2)

is an element of Y, or Y is included in the interval between them, in which

case the STATE-CONTINUOUS assumption requires a state for every y E Y.

This rule performs the inference of Case C. We required the output torque

to take on all values in an interval, ("' to 1 8), but restricted the input
only

torque, (( I t, 0.25 4). Rule 4.6 applies since the transmission ratio is con-

tinuously variable. CORNERS, using r - L returns {4,32,0.25,2}. Of these,ti
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RANGE(to = rti, (t, 0.25 4),r = 2) returns (ti .5 8), which is a superset of

(to 1 8). r 4 also passes this test, but not r = 0.25 or r = 32. Hence

the rule requires the transmission ratio to take on at least one value in [2 4];
So. r 2 4).

For the second inference, we need another predicate on variables.

Definition 4.11 PARAMETER(Z) if and only if there is some single assign-

ment xo such that for all s E S, x(s) = xo.

In the design context, PARAMETER(X) implies that the value of x is fixed

at manufacture.

ordy
Rule 4.7 , Z)&([o ] X)&G(x,y,z) = 0&PARAMETER(y)

only
.(I SUFPT(G, Z, X))

To prove this, one applies the same reasoning as for Rule 4.6, then notes

that since y takes on only one value, that value must be between max(Y)

and min(Y).

4.3 Some Application Problems

The larger system of which these rules are a part is described in chapters 2

and 3. Their interpretation must be extended to deal with sets of artifacts,

rather than individual artifacts; this is done in Chapter 5. In this section I

consider some technical problems arising in applying these rules to a practical

system.
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4.3.1 Relaxing the Monotonicity Assumption

Most of the equations describing mechanical artifacts are not monotonic

over the real numbers. However, for a wide variety of designs it is possible

to restrict values to the non-negative reals, producing strict monotonicity

except perhaps at zero.

The CORNERS function may then involve divisions by zero. We extend

division in the obvious ways: divisions of non-zero numbers by zero return

oo; divisions and multiplications of numbers by co return zero and cc re-

spectively. On dividing zero by zero, or multiplying zero by oo, CORNERS

returns a list including both zero and co.

The DOMAIN operation also needs modification. Consider again the

transmission problem, where G is to - rti = 0. Suppose the output torque

must assume every value in the operating region (e" to 0 8), while the input

torque is limited by (ti 0 2). Applying Rule 4.5, the CORNERS operation re-
only

turns {0, oc, cm, 0, 4}. Now, RANGE(G,(I It, 0 2),(r 0 4)) = (To 0 8), but

in fact there is no need for the transmission ratio to drop to 0; any trans-

mission ratio greater than 4 will do. For this rule, then, we modify the

DOMAIN operation so that it looks for the minimal interval in r such that

RANGE(G, Ti, R) 2 To. In this case, there is no such interval, and this rule

make no inference. Instead, Rule 4.6 returns (soe, r 4 o).

4.3.2 The Termination Issue

The usual constraint propagation of intervals can fail to terminate, for

example[7 on equations x = y and x = 2y starting with intervals 0 < x < 1
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and 0 _5 y < 1. These equations have the solution x = y = 0, but the propa-

gation process approaches this solution asymptotically. It therefore does not

allow such infinite loops.

Instead, the program records the variables used in deriving each labeled

interval. If an antecedent interval depends on either of the other variables in

the antecedent equation, the program does not apply the rule. Termination

is thus guaranteed.

Justification of this procedure in the general case is still empirical. How-

ever, it is informative to more closely consider conventional constraint prop-

agation, Rule 4.1.

x y

Figure 4.2: A non-terminating propagation net

Figure 4.2 graphically illustrates the non-terminating example. Con-

sraint propagation does not terminate because there are two paths from

x to y which, starting with a single value, give different values on reaching

y. In the (x, y) plane each equation describes a curve; the equations are

both satisfied only at the intersections of the curves. Hence, our convention

cutting off propagation after a single cycle leads to looser constraints than

are valid.
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Figure 4.3: The "strongly consistent" mechanical transmission equations
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Figure 4.3 shows the equation network modeling a mechanical transmis-

sion; in this model we include the power p, and efficiency e. The equation

directly relating input and output power is useful; for example, it allows mo-

tor power requirements to be calculated without tight bounds on speed or

torque. However, as a description of the relationships between single values,

it is redundant with the torque and speed equations. More precisely, any pair

of equations derived from this network and having all variables in common

describes the same surface in n-space. We might refer to this network as

strongly consistent.

I conjecture that iteration of "constraint propagation" (Rule 4.1) in

strongly consistent networks cannot lead to progressive tightening of the

limits. To see this, note that such propagation involves taking the maximum

and minimum of the CORNERS(o)f the input intervals. Then, CORNERS(O)f

the output and one input includes the endpoints of the other input. Hence,

moving back and forth along a single propagation chain cannot tighten in-

tervals. But in strongly consistent networks, all the chains between two vari-

ables are equivalent in the way they transmit single values. Thus, repeated

propagation around loops also cannot progress tighten the intervals.

In this case, strong consistency is required by the physics of transmissions.

To date we have been able to describe all of our mechanical artifacts using

strongly consistent networks; hence, at least for Rule 4.1, we are justified in

cutting off propagation if the intervals are mutually dependent.
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4.3.3 Results

I discussed the expressive power of the labeled interval language and the per-

formance of the compiler in detail in chapter 2. Here I remark only that the

compiler has been tested on a wide variety of mechanical and hydraulic power

train designs, as well a few temperature sensing systems. Some of these de-

signs represent more than a million alternative solutions; the compiler has

been able to select a solution, in each case, in less than twenty minutes. The

solutions obtained seem consistently optimal; the time required to compile

designs seems to grow as the logarithm of the number of alternatives repre-

sented, or linearly as the number of equations or variables used to describe

them. The compiler has not been used on designs involving feedback loops,

or where dynamic (as opposed to quasi-static) performance is important.

More generally, these rules and others, make it possible to reason for-

mally about sets of objects in sets of states. They thus (for some objects)

accomplish in a stronger fashion one of the objectives of qualitative physics.

The limitations of the method are in some sense captured by the assump-

tions of the proofs, though we have seen that some relaxation seems possible

in practice. The most critical of these limitations is that the equations be

algebraic; we have not yet begun to extend the rules to differential equations.



Chapter 5

Inferences on Sets of Artifacts

5.1 Introduction

The mechanical engineering curriculum is rich in mathematical techniques for

describing an existing artifact; indeed, this "applied science" dominates the

activities of most departments. On the other hand, designing new artifacts is

central to engineering practice, but is generally shuffled off to a few projects

courses. No pretense is usually made that these courses discuss a science.

A science of design should presumably offer an acr.ount of "designs," the

evolving descriptions used by designers. One might try to account for designs

as words, equations, and lines on paper, without reference to their meaning,

but this seems futile. Therefore, a first question is: what do designs mean?

Or, what do they stand for?

78
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I claim that design descriptions stand for sets of artifacts1 . Consider

the simple schematics of Figure 5.1. The designer generally chooses between

these approaches before knowing precisely what kind of motor or transmission

to use; I therefore conclude that if she decides to use a transmission, she bases

the decision on what she knows about all the motors and transmissions she

might use.

I motor = ice-cream stirrer

lmotor M transmission j ice-cream stirrerI

Figure 5.1: A pair of simple mechanical schematics

Consider also the bearing shown in Figure 5.1. Its inner diameter is

toleranced to allow for manufacturing variation. The designer must consider

these variations in choosing the kind of mating shaft he uses; in fact, he must

designate a set of shafts each of which will work in each of the set of bearings

designated by the drawing. He reasons about the set of artifa'ts the drawing

represents.

A variety of formalisms have been developed for reasoning about sets

of objects. We can use qualitative heuristics to try to capture the expert

designer's "feel" for the alternatives; for example it is "usually" better to

'This idea was suggested by Chapman's [161 notion of partially completed plans, and

Requicha's [17] use of sets to provide a semantics for toleranced drawings.
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use a transmission than to apply direct drive. A more rigorous qualitative

approach uses "qualitative [18] equations", whose variables take on only three

values- zero, minus, and plus.

Unfortunately, the decision whether or not to use a transmission is pre-

cisely a quantitative one, depending on a trade-off among such factors as

cost, accuracy, and acceleration. We therefore need methods of quantitative

reasoning about sets of artifacts.

Probabilistic reasoning is such a method, but seems mis-oriented for some

common design problems: what is the probability, for instance, that the de-

signer will use one kind of transmission rather than another? Another ap-

proach [19] applies the fuzzy set calculus and a "preference" based semantics

to this proble- ,. The precise relationship between these methods and the

rules discussed here remains to be determined.

Sets of artifacts can often be described using intervals of real numbers.

Thus, th,- bearings of Figure 5.1 have internal diameters in the interval from

2.99 mr, to 3.01 mm. The constraint propagation of intervals has been used in

tolerance analysis [9] and in a previous design program of mine [5]. However,

3.01 6.01
2.99 5.99

2.01

1.99

Figure 5.2: "A" ball bearing
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as I showed in Chapter 4, the usual idea of interval constraint propagation is

but one of several needed to reason about an artifact with takes on various

operating conditions. "Labels" on the intervals can be used to determine

when these operations should be applied. Here, I extend these ideas further,

to account for inferences about sets of artifacts in sets of states.

I will begin by extending the propagation rules for single artifacts and

sets of states introduced in Chapter 4, to apply to sets of artifacts. I next

introduce new rules, which are meaningful only for artifact sets. I then pro-

vide rules for eliminating basic sets which are certain to be unsatisfactory,

and for generating descriptions of "schematic sets" by abstracting the de-

scriptions of the included basic sets. Finally, I describe how these operations

are interleaved with a form of bnary search to "compile" mechanical -' signs;

that is, to automatically transform high level descriptions into detailed de-

scriptions of optimal implementations.

5.2 Labeled Interval Propagation

Artifact sets are built up from basic sets of artifacts, those represented by

a single catalog number (e.g. "Dayton motor 2N374"). I will designate an

individual artifacts a, and basic sets of artifacts A. Individual schematic

symbols (e.g. for a motor) represent a list of catalog numbers and there

associated basic sets; I will represent such catalogs by C. I will often refer

to the basic sets A E C, and sometimes to the artifacts a E C, which is

shorthand for the artifacts in the union of the basic sets in C.

The total schematic of Figure 5.1 then represents the set of all the com-
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posite artifacts we might form by combining (in the obvious way) the artifacts

represented by the motor, transmission, and load symbols. Connecting the

motor symbol to the transmission symbol establishes an identity between

appropriate pairs of their describing variables, for example, the motor torque

and the transmission input torque; statements about the one are automati-

cally translated into statements about the other.

We cannot choose among the artifacts in a given basic set (this is the

defining characteristic of a basic set). In designing, we therefore must choose

basic sets such that we can be sure the design will be satisfactory for every

combination of the artifacts in these sets.

5.2.1 Extending Single-Artifact Rules to Sets

This motivates the introduction of a pair of labels distinguishing between

statements which are known to be true, and statements which must be

true in order to have a satisfactory design. Let p be an interval with a

single label, say, (j RPM 1725 1880). Then if for some set of motors

C, and normal operating conditions Sn the speed-regulating qualities of

every motor in the set will hold the RPM in that interval, we can write

A(('' RPM 1725 1880), C,, Sn), where the A stands for Assured. More

generally, the statement p is Assured with respect to a set of basic sets C and

a set of states S ;f and only if p is true with respect to S for each artifact in

the set.

Definition 5.1 Assured: A(p, C, S) 4 Va E C, p(a, S)
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Now consider any of rules 4.1-4.7. If we know that the antecedent state-

ments are true for every artifact in a schematic set C, then the consequent

statement is true for every artifact. That is, each rule can be safely modified

for use on artifact sets, in such fashion that on Assured inputs it gives an

Assured output.

These rules on Assured statements constitute a proof system. If we can

formulate the requirements on the design as labeled interval predicate state-

ments, then we should be satisfied with a design if and only if we can prove

the truth of the requirement statements from the Assured statements de-

scribing the artifacts (and any environmental variables over which we have

control). We will use R, for Required, to label statements which must be

true for a satisfactory design. These statements are the goals of the proof

system; the Assured statements are axioms.

More formally,

Definition 5.2 Required:
efR(p, C, S) 4* VA E C, 3a E A.-'p(a, S))-4-UNSATISFACTORY(a)

Note that while Assured statements are true for every artifact repre-

sented, we write a Required statement even if only some artifact is each

basic set will be unsatisfactory unless the statement is satisfied. As an

example, in the second schematic of Figure 5.1 we might know that the

set of AC induction motors represented by the motor symbol assure rel-

atively little variation in speed under normal operating conditions S,;

A((['] RPM 1725 1800), C,, S,,). We might also know that some transmis-

sions in each of the basic sets represented break down if habitually driven
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only
too fast; R(( ' RPM 0 1800), Ct, Sn). Assembling the schematic makes the

motor RPM and the transmission input RPM equivalent, so for every com-

bination of motor and transmission, the first statement proves the second,

and the requirement is satisfied.

Now consider again propagation rules 4.1-4.7. Suppose for a particu-

lar design and rule, there are Required statements matching the rule's an-

tecedents; for any satisfactory design, the antecedents must be satisfied. But

if the antecedents are satisfied, so is the consequent; therefore, in any satis-

factory design, the antecedents must be satisfied. For the same reason, if we

have one Required antecedent, and one Assured, the consequent is Required.

Propagation of required statements is useful. For example, suppose that

the ice-cream stirrer of Figure 5.1 imposes independent requirements on

torque and speed; (R e"=V t 0 10) and (R e'M, s 5 10). Using Rule 4.4 and

the power equation p = ts, we conclude (R e*Mti p 0 100) (in appropriate

units). The power requirement can be used eliminate under-powered motors

before the transmission is selected.

The arguments of the this section allow us to restate Rule 4.1 as the

following.

Rule 4.1a: A(([( X), C, S)&A((" Y), C, S)&G(x, y, z) = 0

ordy ony

-- A(([' i RANGE(G, X, Y)), C, S)

nlnl

Rule 4.1 b: R(([o j X), C, S)&R(([Oniv Y), C, S)&a(z, y, z)= 0

--- R(([ , a RANGE( G, X, Y ) ), C, S)

Mny only
Rule 4.1c: A(([' X), C, S)&R((( I Y), C,S)&G(x, y,z) = 0

only
-*R(I RANGE(G, X, Y)), C,S)
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More compactly, we can write

Rule 4.1':(R A)(([" X), C, S)&(R A)(([ Y), C,S)&G(x,y,z) = 0

-(R A)(([ RANGE(G,X,Y)), C,S)

where it is understood that we apply the A on the right hand side only if

both left sides are A. I will refrain from restating all of the rules given in

chapter 4; their extensions to sets of artifacts follow the same pattern as for

Rule 4.1.

With reference to Rule 4.4, note that the mechanical design compiler has

no formal mechanism for establishing the independence of the antecedent

statements. Rather, they are assumed independent unless the derivation of

either involves another of the variables of the equation, or a dependence

is specifically stated by the user. It has been easy for the programmer to

correctly employ this convention for Required and Assured statements sep-

arately; I suspect it is impossible to correctly employ it for mixed Required

and Assured statements. Hence, Rule 4.4 is never applied to mixed A and

R statements.

We have extended rules applying to single artifacts to work on sets of

artifacts. In the next section we will consider a new k id of statement which

is meaningful only for artifact sets; in the section following, we will derive

rules involving this statement.
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5.2.2 The "No-stronger" Statement

Let us consider a slightly more complex model of a transmission, one which

includes the efficiency e; if p is power, we have po = epi. Suppose that we need

an Operating Region of output powers, say R((.rP po 0 8), C, S). Suppose

also that we know that the efficiencies of these transmissions depend on age,

lubrication, temperature, speed, and manufacturing variations, but we have
only

in all cases A(([ ) e .5 .9), C, S). As design engineers, we would conclude

that we should supply enoLe .nput power to provide adequate output power

at any of these efficiencies; R(( ..?y pi 0 16), C, S). But we cannot justify this

inference on the basis of the specifications given, because we only know from
on"'

(A [ ]Ie .5 .9) that the efficiency will fall into the interval from .5 to .9.

Consistent with this specification, we might know that the transmissions are

always most efficient at high powers; an equation might show that as the

output power approaches 8, the efficiency goes above .8. In this case, we

would conclude that in fact input power need only vary from 0 to 10.

Our intuitive designer's reasoning is based on our belief that we will never

know a "stronger" statement about the efficiency; by stronger we mean one

which confines the efficiency to some part of the interval [.5 .91. To formalize

this idea we define the No-stronger label as applied to ([ J statements.

Definition 5.3

N(([O X), C,S) 4. VA E C, Vx E X,3a E A.3s E S.x(a,s) = x

That is, for every basic set in the catalog, for every assignment in X, and for
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every distinguishable set of states in S, there is at least one artifact and one

state which make the assignment.

We also have a No-stronger statement for Regions of Operation.

Definition 5.4 N(('elJM X), CS) 4*1
VA E C,

[3a E A.Vs E S.x(a, s) : xl,&3a E A.Vs E S.x(a, s) > xt

That is, for every basic set in the catalog, and for every assignment x not

in X, there is at least one artifact whose x assignments are limited to X.

Some of the rules which follow are valid only if the antecedent statements

are independent of each other and other the consequent variable. We will

need to slightly extend the definition given in Chapter 4 for independence; I

will introduce further extensions later.

Definition 5.5 Suppose there ezists some al E A and xi E X such that

x, = x(a1 ,si), and also some a2 E A and y1 E Y such that y = y(a 2, s 2),

with a, and 32 in S; if and only if this implies that there is an a E A and an

s E S such that x(a,s) = x and y(a,s) = yl, then X andY are independent.

This is a weakened version of Bayesian independence; instead of saying

that knowing the value of one variable tell us nothing about probability of

the other assuming a particular value, we are saying roughly that knowing

the value of one variable cannot tell us that the probability of the other

assumL,. a particular value is either zero or one.

The compiler assumes that specification statements are independent un-

less they are either specifically labeled as dependent, or their derivation
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involves variables which are the same or are dependent. It is up to the

programmer modeling the artifact sets to ensure that this assumition is sat-

isfied. I will present informal arguments that this is reasonably possible;

formal guidance for programmers, and proof that the assumption can be sat-

isfied consistently without undo weakening of the representation, will have

to wait on a better understanding of labeled interval propagation in equation

graphs.

5.2.3 The rules

The following rules apply to N statements. They are presented with the

sets of states and artifacts implicit, and the N, R, and A labels inside the

interval statement. Thus, (N * X) is here equivalent to N(("l" X), C, S).

The rules discussed in section 5.2.1 had been previously proven for single

artifacts; the proofs needed only two generic extensions to handle sets of

*artifacts. In contrast, the following rules are inherently set based, and must

be individually proven.

Each of the first set of rules infers a Requirement statement from a No-

stronger statement and a Requirement statement. In some of these cases the

consequent pertains, not to the set of artifacts described by the antecedents,

but to a set which (by virtue of being connected) shares the consequent

variable with the set described by the antecedents. We will indicate this fact

by showing a C' as an argument to the antecedent. The first rule provides a

clarifying example.
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Rule 5.1 (R *"**.r 7) & (N [" X) & PARAMETER(X) & G(x,y,z) = 0
--- + (R "=rv RANGE(G, Z, X)(C ))

The idea is that we need a sufficiently large Operating Region for y to

produce the Required Operating Region for z using any x E X. Consider for

example the transmission specifications with which we introduced this sec-

tion: (R "'=v Po 0 8), (N [0 j e .5 .9), with equation to - et,. Matching them

against the pattern, we apply the RANGE operation to get (R evi pi 0 16).

However, it is not true that for every transmission in the artifact set there

is a permissible state assigning the input power every value in the interval.

Rather, in any satisfactory design, for every motor there is a permissible

state assigning the input power every value in the interval. This ensures that

every motor will be satisfactory with any transmission.

This distinction is not enforced in the current design compiler, which

infers the statement about the transmission input power, then translates it

into a statement about motor power. This confusion does not appear to

have induced errors, and it is possible that for some fundamental reason

the distinction does not matter. More likely, it matters in cases I have not

yet tested. In any case, the distinction appears to be related to a more

fundamental confusion about causality, which I will discuss later.

The proof of Rule 5.1 is straightforward. By the first antecedent, for

every artifact a in a satisfactory basic set A, and for every z E Z, there is

a state . E S such that z(a, a) = z. By the second antecedent, for every

assignment x E X, every basic set A in the catalog described, and every

s E S, there is at least one artifact a E A such that x(a, s) = x. Therefore,
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by the definition of RANGE, for every y E RANGE(G, Z, X), and every basic

set A E C, there is at least one artifact a E A and one s E S such that

y(a, s) = y. But y also describes a connected basic set of artifacts A', each

of which must work with any artifact in the basic set finally selected. We

can see that for each such artifact a' E A' there must be a permissible state

s E S such that y(a', s) = y. Thus, we have for these connected artifacts

(R every RANGE(G, Z, X)).

Next, we have

Rule 5.2 (R [ Z)&(N [,nly X)&INDEPENDENT(X, Y)
ordy

&PARAMETER()&PARAMETER(y)-(R o DOMAIN(G, Z, X)(C'))

Example: Let us use Rule 5.2 to solve a simple "tolerance stacking"

problem. Figure 5.2.3 shows a pair of rods, placed end to end; we must

choose the tolerance on the first rod in order to guarantee the tolerance on

the over-all length. We match the problem against the rule as follows.

ordp only
(R O"rd l, 1.98 2.02) - (R I ]v)

(N 1'v 12.99 1.01) - (N ]'Y v2)

It- (1, + 12) = 0 - G(vi, V2 ,v3)=

nly
The rule concludes (R 0 ] 11 .99 1.01).

Proof: The consequent and antecedents of Rule 5.2 pertain to different

artifact sets sharing the descriptive variable y. Now suppose the consequent is

false; that is, there is some a E A, such that y(a, s) = yo DOMAIN(G, Z, X),

for all s E S. Then, by the definition of DOMAIN, there is some xi E X such

that g(x, y) 0 Z. From the second antecedent, there is some artifact a, such
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E I I
0.99
1.01

1.98
2.02 I

Figure 5.3: Selecting a tolerance

that x(a, s) = x, for all s; by the independence assumption, there is some

artifact a3 assigning both Yo and xi. Therefore z(a 3, -s) = g(YO, xI) is not in

Z, violating the requirement of the first antecedent. Hence, for a satisfactory

design, there must not be any artifact a E A and state s E S such that

y(a,s) V DOMAIN(G, Z, X). That is, (R ['( DoMAIN(G,Z,X)).

.Note that i i have not in this case required that the consequent anu

antecedent artfacts be different, although they may be. The assumption of

independence is justified by the requirement that x and y be parameters. If

they belong to different artifacts, their determining manufacturing process

should be independent; if in the same artifact, it is up to the programmer to

model any dependence he wishes to take into account.

The next pair of rules are closely related; y is a state variable in one case,

a parameter in the other.

Rule 5.3 (R Z)&(N X)&STATE-CONTINUOUS(y)
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&G(x, y, z) = O&STATE-VARIABLE(y)---- (R e44ry DOMAIN(G, Z, X))

Example: The power equation relates torque, speed, and power: p = wt,

where w is the angular speed. If we require an operating region of power, say

(R every p 2 12) and can guarantee only a limited operating region of torques,

say (N eevy t 1 2), we can match against the pattern to require a operating

region of speeds: (R ei'yv w 2 6).

Proof: Again we can reason by contradiction. 8* and are either positive8X areeteypstv

or negative throughout the domain. There are four permutations of these

signs; I consider one in detail, since the others involve symmetric reasoning.

Throughout, let Y = DOMAIN(G, Z, X). The idea is to show that for a

satisfactory design there must be states making assignments to y on either

side of Y.

Suppose 8 <0, and 8 < 0. Combining this with the definition of

DOMAIN and lemma 4.1 we have g(xh, Yh) = zi. By the first antecedent,

for every artifact a in a satisfactory design, there is a state s, such that

z(a, st) = zj. But by the second antecedent, there is at least one such artifact

a, such that no state s assigns x(al, s) > Xh. Still, by the compatibility

property, g(x(ai, st), y(al, st)) = z(al, st) = zi; since x(al, s) < xh, by the

assumed signs of the derivatives, y(al, sI) must be greater than or equal to

Yh.

We can use similar reasoning to conclude that there is some Sh E S and

ah E A such that y(ah, Sh) < Yl. But since every artifact in a' E A' must

work with both al and ah, the STATE-CONTINUOUS assumption requires that

there is a state in S making every assignment in Y; (R *%e6y Y).
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For this rule we require neither independence, nor that the antecedents

and consequent refer to different components. The key is that the antecedent

interval is set by the domain operation; even with the most favorable depen-

dence between parameters, this large an operating region is required.

When y is a parameter, we have

Rule E.4 (R e,"yY Z)&(N e y X)&G(x,y,z) = 0

&PARAMETER(y)-(R ' SUFPT(G, Z, X)(C))

Example: We use again the ideal transmission equation: t0 = rt. If we

have (R eJy t, 4 12) and (N ""'" t, 1 6), we can match patterns to form

(R [o ]r 2 4). Note that the antecedent input torque requirement really

pertains to a different component than the antecedent ratio requirement.

Proof: Let Y = SUFPT(.G, Z, X), and suppose that there is a satisfactory

artifact a' such that y(a', s) 0 Y, for every s. (Since y is a parameter it does

not cl-- nge with state.) Then by the definition of SUFPT, there is a value

zo E Z such that for every x E X, g(y 0 , x) # zo; by the first antecedent, for

every a E A there is some so E S such z(a, so) = zo. Now, y is shared between

C and C', and every artifact in the finally selected C must work with every

artifact in C', so for every a E A, y = Yo. By the compatibility property

of G, however, for every a E A, there there is some xo = x(a, so), and

zo = g(xo, yo). But this xo 0 X, which contradicts the second antecedent.

Therefr:e, for a satisfactory design, y E Y; that is, (R ('] SUFPT(G, Z, X)).

There are also rules which prove No-Stronger statements.
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Rule 5.5 INDEPENDENT((N everv X)(N eieye Y))&G(x, y, z) = 0

---- (N e' ve RANGE(G, X, Y))

Example: Suppose we have restricted torque and speed capacity in a

speed-controlled motor; (N "e+'yi t 03), and (N e , Y w 04). We apply the

rule and the equation p = iw to conclude (Nev,£" p 012).

To say that the two No-stronger statements are independent is to say that

there is a single artifact in every basic set which exhibits both limitations.

More formally,

INDEPENDENT((N ".erv X),(N evey Y)) 4 VA E C, 3ao E A.Vs E

S(x(ao, s) E X&y(ao, s) E Y

The next rule applies when y is a parameter; that is, when its value is

established by the manufacturing process, wear, etc., prior to the imposition

of actual loads.

Rule 5.6 INDEPENDENT((N *evr X), (N[n Y))&PARAMETER(y)

&G(x, y, z) = 0--(N e*"-y DOMAIN(G, X, Y))

Example: Suppose for example that we can be confident of motor powers,

input to our transmission, only up to 16 ((N e"-'v pi 0 16)), while as before
onlywe have only loose bounds on transmission efficiency; (A [ ] e .5 .9). From

the equation t. - eti and Rule 5.6 we conclude that we can be sure only of
output powers up to 8: (N r P. 0 8). This rule is in some sense the mirror

image of Rule 5.1.

Here, we are assuming independence between the antecedent labeled in-

tervals, in the sense that for each assignment y E Y, there is a set of artifacts
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which assigns y, and there is at least one member of each such set for which

x is limited to the interval x. The assumption is plausible because y is a

parameter. Therefore, if y has not been used in deriving the first antecedent,

it seems reasonable that these limitations have been imposed without respect

to y.

Proof: For any y E Y there is a set of artifacts assigning y in every state.

There is at least one artifact in each such set for which x is limited to X;

hence, for any z 0 DOMAIN(G, X, Y) there is at least one artifact for which

z is unattainable.

Finally, we have the following.

Rule 5.7 INDEPENDENT(X, Y)&(N [ X)&(A eirp Y)&G(x, y, z) = 0
only

-- (N [ RANGE(G, X, Y))

Proof: If there is an artifact in every basic set making each assignment

in X, and independently every artifact makes every assignment in Y, then

there is an artifact making each assignment is g(X, Y) = RANGE(G, X, Y).

Justification of the independence assumption: Catalogs for the design

compiler have been constructed using a crude notion of causality. That is, A

and N statements are input only in describing an artifact set which is said

to "control" the variable; for example, the speed-controlled motor is said to

control the speed, and can assert Nlimits on the range of speed. Similarly, an

AC induction motor "controls" by its speed regulating characteristics, and

can define limits on it ability to regulate. The programmer must ensure the

independence of such statements within a single schematic representation;

obviously, if this schematic controls a variable, it is independent of variables
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in other schematic representations. A and N statements can be derived only

from A and N statements. Hence, unless they share a derivation, they are

independent.

It is precisely this notion of causality which is being challenged by the

most recent developments. It now appears that it may be possible to elim-

inate the distinction between Assured and Required statements, and to re-

place the No-stronger label with one indicating that a statement is true for

at least one artifact in each basic set. That is, instead of writing (N n X),

we would write (B e..=y X), with nearly the same semantics. This change

promises to considerably clarify the relationships between rules, while focus-

ing attention on independence relationship.

5.3 Abstraction and Search

This section turns from propagation through equations to address two ques-

tions. Given descriptions for basic sets, how can we formulate descriptions of

the entire catalog they include? Given such descriptions, how can we select

the best basic sets with which to implement a design?

5.3.1 Abstraction

Consider a catalog listing of motors. We can use the printed catalog to

formulate labeled interval statements describing the basic sets of motors, as

well as equations which assume to apply to all of the motors. However,

we need labeled interval statements describing all the motors, so that, for
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example, we can draw correct inferences about transmissions before we choose

the motor catalog number.

Figure 5.4: Abstracting labeled intervals

(A[] rpm 1750 1800)
M-12 (N[] rpm 17.50 IBM)

(A(I rpm 1700 1s0)

13 (N (I rpm 1700 1800)

(A[] rpm 1700 1800)

(NI rpm 1750 180)

Figure 5.4 shows a Venn diagram for some statements about a pair of basic

motor sets, and the super-set which includes them; it illustrates rules 1 and

6 of Table 5.1. Here the symbol U %tands for the "filled-union", the interval

between the minimum and maximum values of the two intervals. Also, if the

intersection to be taken is empty, we do not form any new statement. The

table explicitly represents artifacts and state sets.

The rules follow trivially from the definitions. For example, in rule 5,

every basic set in CIUC 2 clearly has an artifact which is limited to either X,

or X 2 , and hence to their union.
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only nly only
1. (A[" X1)(C,, S)&(A F X2)(C2 , S)-4(A [1 X1 uX2 (CuC2,S)

only nly only

3.

(A - X1)(C,, S)&(A eZ" X2)(C 2,S)--(A CV-" XnX2,(C uC2 ,S)

4.
(R-' x,)(c,, S)&(R ' ' X,)(C2,S)--.<R ° e'"XnX2)(CIuC2, S)

5.

(N etj"r X,)(C,,S)&(N eVZP X2)(C 2,S)----(N e"4' 'y XUX2 )(CUC2 ,S)

onlyonly only
6. (N ['y X,)(C,,S)&(N [I X 2)(C 2,S)----,(N I I X nX 2 )(C 1 UC 2 ,S)

Table 5.1: Abstraction rules

5.3.2 Elimination and Search

The set represented by a schematic includes all the artifacts that might be

purchased using the catalog numbers associated with the schematic. To se-

lect the best implementation, the compiler need only eliminate those catalog

numbers which are provably worse than the best. This apparently round-

about procedure has three advantages. First, the descriptions produced by

the rules of Table 5.1 are valid for any subset of the catalog described; thus,

elimination of any subset leaves the descriptions valid, and the inference pro-
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cess is monotonic. Second, elimination processes are local; if some part of the

description says that some catalog number is unsatisfactory, the compiler can

safely eliminate it regardless of the rest of the description. Third, elimination

processes are parallel; we need not be concerned with which catalog numbers

we eliminate first. This simplifies programming, and should ultimately allow

the compiler to run on parallel hardware.

We can be sure we should eliminate a basic set if some statement de-

scribing the basic set conflicts with a some statement describing all the

artifacts under consideration. Suppose for example, that we want a mo-

tor connected to a load, and we know that for all of the loads under con-

sideration, it is Required that the speed be regulated between 1750 and
onrd

1800 rpm; (R [ ) RPM 1750 1800). If for some basic set of motors we have

(N 10"I' RPM 1725 1800), we can eliminate those motors; they cannot pro-

vide adequate regulation.

Table 5.2 shows ways in which labeled interval specification statements

can conflict. The (R A) lists imply that the statement can be either Required

or Assured. I omit the quite straightforward proofs.

The elimination process is not guaranteed to leave only a single basic

set for each of the components. But for each such incomplete design, the

program can create two daughter designs, by splitting some catalog in two.

The abstraction process can then be performed on the two sub-catalogs, and

propagation and elimination carried out based on the new statements gen-

erated. The program can select the most promising daughter design (based

on a cost function) on which to repeat the process.
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1. ((R A) every X1 )&((R A) 0X")X' %

2. ((R A) [0' X1)&((R A) or4j X 2)XpAIX 2

3. (N [0' X1)&((R A) O['] X2)&X, IX X 2

4. ((R A) every X,)&(N've" X 2)&X 9 X2

Table 5.2: Elimination patterns

5.4 Conclusion

This chapter seems likely to be strongly affected by future work. The variety

of special definitions of independence are disquieting, as are the number of

rules used in the program for which I have not developed proofs. It now

appears that it may be possible to replace the No-stronger, Required, and

Assured labels with others more directly reflecting the whether a statement

is true for every artifact in a basic set, or only some. Such a charge should

simplify the labeled interval calculus, and make possible more satisfying cor-

rectness argument. Questions about independence will remain, to be an-

swered by graph-based arguments. Such developments, however, are beyond

the scope of this thesis.



Chapter 6

The Basic Ideas

6.1 Introduction

In this chapter I step back from the technical details to look at the underly-

ing ideas, summarized in Table 6.1. . By so disengaging the ideas from the

particulars of my work I hope to make them useful in other contexts. How-

ever, I emphasize that while I have tried to isolate each idea for discussion,

they gain much of their power from mutual reinforcement, and from the very

details this chapter avoids.

I mention some closely related work, pointing out both similarities (shared

ideas) and differences. Where I have misunderstood or omitted such work, I

apologize (and woild appreciate corrective mail from the researchers).

101
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1. Provide mechanical designers a compositionally-closed design-definition
language.

2. Use purchasing or manufacturing procedures to define the set of arti-
facts represented by a schematic symbol.

3. Automatically transform "high level" descriptions into detailed descrip-
tions of optimal implementations.

4. Use multiple levels of language to link schematic and quantitative de-
scriptions.

5. Use "labeled" intervals to account for operating and manufacturing
variation.

6. Automatically abstract schematic-level descriptions from basic-set de-
scriptions.

7. Define a formal operation on intervals and equations which corresponds
to the usual idea of constraint propagation; then define its inverses.

8. Formulate rules propagating labeled intervals through equations.

9. Use "ports" to compose designs by equating variables describing con-
nected schematic symbols.

10. Eliminate any distinction between descriptions of "function", "object",
"user specifications", and "environment".

11. Eliminate basic sets which can be proven not to work.

12. Search using a cycle of steps which divide or eliminate volumes of the
artifact space.

Table 6.1: The Key Ideas
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6.2 The Ideas

Idea 1 Provide to mechanical designers a compositionally-closed design def-

inition language.

Much design automation work has focused on the control structure of

design processes [14, 20, 21, 3]. Such work provides programmers, not de-

signers, tools with which to build programs designing narrowly defined sets

of artifacts. The "parametric design" commercial systems also fall into this

category.

In contrast, the design compiler provides the designer with a set of prim-

itives for "component types" from which she can in seconds build a descrip-

tion of a design. Such a design, once defined, becomes a building block from

which more complex designs can be constructed. This approach allows a

single program to automate a wide range of designs. It also tends to enforce

rigor; since the language must work for a wide variety of designs, it is hard

to hide difficulties with special tricks.

The general notion of compositional descriptive languages is well dis-

cussed in [22]. My early efforts to apply it to component selection are dis-

cussed in [5, 23]; other mechanical design applications of this idea are de-

scribed in [4, 24, 8, 2, 10]. Discussion of further ideas will make explicit the

differences between these approaches and my own.

Idea 2 Use purchasing or manufacturing procedures to define the set of ar-

tifacts represented by a schematic symbol.

A list of catalog numbers is associated with the schematic symbol fo., say,
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a motor. Associated with each catalog number is a manufacturing company

which can provide any number of motors of this type. Because of manu-

facturing tolerances, each of these motors is unique. The schematic symbol

for a motor represents the set of all the manufacturable motors for all the

catalog numbers. We can, therefore, use set theory and our knowledge of the

possible individual motors to rigorously justify inferences on the quantitative

description associated with the schematic.

We have used the catalog number, and the purchasing process to which

it is an input, to define a set of artifacts. The catalog number designates

the artifact set; I will later discuss the languages I use to describe the set.

The catalog number is similar in principle to such designations as "drill-hole,

5mm diameter, 10mm deep"; that is, there is a known process which takes

the description and returns any of a predictable set of artifacts.1

There are several alternative approaches to defining the meaning of design

descriptions. The first and most common is to ignore the problem, assuming

that we intuitively know what a design means. A second is to suppose that

the design represents an "archetypical" artifact; the notion seems unclear to

me.

A more rigorous third approach is to treat the descriptions as defining the

sets; given a toleranced description of a hole, we can decide if a given hole

belongs in this class [17]. But if we do this we lose the connections among

1I have not yet implemented any such designations, and there is a complication.

With schematics built from symbols representing sets of cataloged components, we are

guaranteed neat hierarchical decompoiiions; we have no such guarantees for machined

components.
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the characteristics of a device; in fact, in fact no assurance that it can be

manufactured at all.

As a fourth approach one can suppose that a design description represents

a particular artifact; the design transformations then change the artifact

represented. This approach has been used in "hill-climbing" optimizers for

selecting single components [21, 4]; these in turn have been incorporated

into larger "expert systems" which in narrowly defined domains can establish

the specifications for the individual components [3, 4]. Such non-set-based

methods necessarily ignore manufacturing tolerances. Because the artifact

represented is continually changing, any inference made about one artifact

may have to be re-computed for the next. The search can hang up on local

optima, or thrash about making changes in directions orthogonal to that

needed. These problems have thus precluded the success of this approach in

fully compositional systems.

On the other hand, "design by features" (10, 2] and "variational geom-

etry" [8] systems do provide composable languages suitable for describing

single artifacts, not sets. They analyze rather than transform the artifact

description; they seem precluded from implementing the following idea.

Idea 3 Automatically transform "high level" descriptions into detailed de-

scriptions of optimal implementations.

This embodies the essence of my objective. It is by no means a new idea;

rather, it is the essential goal of computer language compilers. I present

justifying arguments because I sometimes hear claims that "detailed design"

is a solved problem.
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A variety of work has been done on "suggestion systems" [24, 25], which

provide the user a list of all the implementations the program can generate

from the inputs, letting her choose between them; by avoiding the hard

problem of picking solutions, the researchers have been able to focus on

other hard problems (such as the geometric issues I have largely avoided).

However, I have several reasons for preferring my own focus.

First, the "detailed design" problem has not been solved. I know of no

other tested, compositional, detailed design programs.

Second, the problem is economically important; designers spend much of

their time on the detailed, quantitative process of selecting the right compo-

nents. Programs performing this task would free humans to be "creative". In

contrast, suggestion systems may swamp the user with indigestible quantities

of poor designs.

Third, detailed design provides a ready test of correctness for ideas which

I believe have applications to more "conceptual" or geometric domains. In-

deed, the tools I have developed seem to have applications outside design;

see chapter 7.

It is sometimes [26] more narrowly argued that design programs should

not aim at optimality, for two reasons. First, one can never know that one

has the "best" design possible. The utility function used may be wrong. Im-

provements in materials may always make possible a better design. Second,

only for fairly special cases is the "optimality function" smooth enough that

one can readily distinguish the global optimum from the local optima.

The first argument is based on correct premises, but misses the point. We
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cannot know that we have the best possible design, but we can know that

we have the best design which can be produced by a particular program,

as measured by the best criteria we can formulate. The second argument is

a problem only for some search procedures; we outline one below which is

guaranteed to find the globally optimal solution, and empirically appears to

do so reasonably quickly.

Idea 4 Use multiple levels of language to link schematic and quantitative

descriptions.

I actually describe artifact sets using four connected kinds of language;

schematic symbols, lists of catalog numbers, networks of equations, and the

"labeled intervals" I introduce below. Variables in equations are given mean-

ing by their association with the schematic and the catalog numbers; the vari-

ables in turn allow quantitative description of the artifact sets the schematics

represent.

In this system the linkage between levels is explicit and direct, as it is in

"design by features" [10, 2] and "variational geometry" [8] systems. In con-

trast, some other programs [25, 26, 4] transform descriptions in one language

into descriptions in another using separate operators. These operators can

in principal work on more than one composed element; this approach seems

to provide a potentially richer toolkit than my own. On the other hand, use

of such operators seems to preclude automatic abstraction processes, such as

those discussed under Idea 6.

Idea 5 Use "labeled intervals" to account for operating condition and man-

ufacturing variation.
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There is nothing new in the idea that intervals of real numbers can be

used to account for variation. What does appear to be new is the observation

that there are many different relationships that can apply between a set of

artifacts, a set of operating conditions or states, a descriptive variable, and

a set of values for that variable. For example, it is one thing to say that

the RPM of a motor is so regulated that under normal operating conditions

it never leaves the interval [1000 2000). It is quite another to say that it is

speed controlled, and can be set for any speed in the interval (1000 2000].

These distinctions and more can be captured with a system of "labels";

these examples are labeled by "Limits" and "Region of Operation". Labeled

intervals can be given precisely defined meanings using set theory. Useful

operations on them can be formally defined, and proven correct.

Idea 6 Automatically abstract schematic-level descriptions from "basic-set"

descriptions.

If we believe that a schematic should represent a set of artifacts, then

we need a description of that set. We could of course write one down in

the labeled interval language, but as we shall see, the set represented is

continually changing, and writing such descriptions is hard work. But we can,

once and for all, write descriptions of the "basic sets" which correspond to

individual catalog numbers. We can then automatically generate descriptions

for the sets corresponding to a list of catalog numbers. For example, if it is

"Required" for some transmissions that the input speed lie in the interval [0

1800] and for others that it lie in the interval [0 3600], then it is Required

for all that it lie in the interval [0 3600]; we simply take the union of the
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intervals.

Idea 7 Define a formal operation on intervals and equations which corre-

sponds to the usual idea of constraint propagation; then define its inverses.

Suppose for example that z = z + y, that x is in the interval [1 3], and

y is in the interval [2 4]. Then z must be in the interval [3 7]. We can

define a purely formal operation (called RANGE) which takes two intervals

(with their associated variables) and an equation in three variables, and

returns the desired third interval. We can define an inverse to RANGE called

DOMAIN; given this equation, the z interval [3 7], and the y interval [2 4],

DOMAIN returns the x interval [2 4]. SUFFICIENT-POINTS is another sort

of inverse operation; all three of these operations are needed in performing

design inferences.

The "constraint propagation of intervals", equivalent to RANGE, has been

used for tolerance analysis [9].

Idea 8 Formulate rules propagating labeled intervals through equations.

Suppose for a hydraulic pump we are Assured that the input power has an

Operating Region (will take on every value) in the interval 100 to 1000 watts,

and that the efficiency is Limited is to the interval .8 to 1. We have a rule that

if we are Assured that x has a Operating Region X, y has Assured Limits Y,

and there is an equation G relating x, y, and z, then we can conclude that

z is Assured to have the Operating Region formed by applying the Domain

operation to G, X, Y.



CHAPTER 6. THE BASIC IDEAS 110

In this case the equation of interest says that power out equals efficiency

times power in, and we conclude an Assured Operating Region for the output

power of 100 to 800 watts. Note that "constraint propagation" would give

the interval 80 to 1000; we needed the inverse operation.

Most mechanical designers could describe and justify this calculation of

the Assured output power Operating Region in intuitive terms. The bulk of

this work consists in developing a compact notation for such inference rt. -s;

establishing their connections with set theory, logic, and analysis; testing

their application to real design problems; and proving their correctness.

I have discussed how some characteristics of artifacts can be represented

using labeled intervals, others using equations; how labeled intervals can

be propagated through equations, and how descriptions of "schematic sets"

can be formulated from their subsets. I turn now to the question of how

schematics can be composed, and optimal implementations found.

Idea 9 Use "ports" to compose designs by equating variables which describe

the connected schematic symbols.

This is a fairly standard notion. There are far fewer kinds of interface be-

tween commonly used mechanical artifacts, and variables needed to describe

those interfaces, than there are internal arrangements of the artifacts, and

variables needed to describe the internal arrangements. This is not an acci-

dent; such components are offered for sale partly because they offer simple

and well-defined connections to other components. We can therefore identify

for a domain a limited class of "port" types, for example shaft-to-shaft con-

nections, or hydraulic ports, each with its characteristic variables, e.g. torque
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and flow. These ports types establish identities between the port variables

and the internal variables describing each artifact class; e.g., the torque of

the input shaft of a transmission, and the input torque of the transmission

itself.

When the user tries to connect the motor and transmission schematics,

the system can check port types and directions to get the correct connection,

then use the port variables to establish an identity between the motor output

torque and the transmission input torque. Thus, any statement about one

immediately generates a corresponding statement about the other. This

uniform propagation mechanism prompts the next idea.

Idea 10 Eliminate any distinction between descriptions of "function", "ob-

ject", "user specifications", and "environment".

In my design compiler, a specification is an equation, a labeled interval,

or a schematic linkage. Statements of exactly the same form can be used to

describe the "function" of an object (say the output speed of a motor), its

"structure" (the height of its shaft), and its environment (the height of the

transmission shaft). One might suppose that Requirement statements would

always originate with the user, but it is not so; a transmission imposes Re-

quired Limits on input speed and torque. This use of the same mechanisms to

describe the user's intent, the artifacts, and the environment of the artifacts

makes compositionality easy. That the system works well without making

these distinctions suggests that they may mean less than often supposed.

Idea 11 Eliminate basic sets which can be proven not to work.
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This idea may seem inverted; why focus on eliminating bad catalog num-

bers, instead of picking good ones? But there are good reasons for doing it

this way.

Consider an operation which could pick an acceptable basic set for some

component of a design, given some specifications. The operation would have

to consider all of the specifications. But in a compositional system, the

number and kind of specifications cannot be known in advance; how can we

formulate an operation which considers them all?

On the other hand, consider an elimination operation which examines a

statement about the environment in which an artifact set is to operate, and a

related statement about the artifact set itself. If the statements conflict, the

operator eliminates the basic set. For example, we might have a statement

propagated through the transmission to the connected motor, indicating that

the horsepower was Required to range throughout the Operating Region from

0 to 1 horsepower. We would eliminate a basic set of motors whose description

included an Assured statement that the horsepower is limited to the range

from 0 to .5.

Such an operator need only consider two statements at a time, regardless

of the rest of the design. The elimination process is inherently modular.

It is also parallel; if the program eliminates one basic set for one reason,

and another for a different reason, it does not matter which is eliminated

first. This frees the programmer and user from thinking about the "flow of

control", allowing them to focus instead on physics. It also means that the

program should run well on parallel hardware.
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Idea 12 Search using a cycle of steps which divide and eliminate volumes of

the artifact space.

Design is often thought of as searching a "design" space for the right

"design"; the axes of this space are variables describing the design. The

compiler instead works in a "artifact space", which has an axis for each

symbol in the design schematic. We imagine the catalog numbers for the

symbol arranged along the axis in some order. The elimination operation
"shortens" an axis, shrinking the space.

We can also cut an axis in two, thus forming two new artifact spaces or

daughter designs. The process of division generates new specifications. If for

a motor-transmission design we divide the motor catalog, we can eliminate

in each daughter design those transmissions which will not work with the

daughter designs subset of the motors.

We need a cost function for each schematic symbol (often the function is

the same for all axes, say price plus weight); we suppose it to be in "smaller

is better" form. The cost function is over those variables which are fixed at

manufacture, so for each catalog number there is a small interval of possible

values of the cost function; for the whole set of artifacts there will be a

much larger interval. We divide again the daughter design with the lowest

minimum cost, and repeat the process. This division process forms a tree;

we continually divide the most promising leaf of the tree.

We are guaranteed to find the "best" solution; the question is, how long

will it take? In theory, we might find ourselves constantly jumping from

branch to branch; we might have to search some fixed fraction of all the
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potential implementations However, the artifact space is organized, usually

by the size of the components. In consequence, actual design compilations

have at worst taken time proportional to the logarithm of the number of

alternatives; see Chapter 2.

6.3 Conclusion

I should perhaps conclude with the most general idea of all, the notion of or-

ganizing the research as shown in Figure 1.3. I keep such mathematical ideas

as "sets" and "closure" closely in mind while developing ideas. I recklessly

invent new symbolic notation in order to compactly represent these ideas as

formal operations. I test these formalisms using programs, and try to pin

down their meaning and prove their validity by tying them to traditional

mathematics. I advance opportunistically; the program has frequently been

a little ahead of the formalism, the formalism well ahead of the proofs. But

I keep trying to coerce them into correspondence.

This approach to problems is hardly new. It has in recent years become

increasingly useful because symbolic computation makes formal representa-

tions so powerful.

Ultimately, these ideas are valuable if they work. They have worked where

I have tested them; I continue to elaborate them, and to extend them to new

domains.



Chapter 7

The context of the work

7.1 The Past: A Review of the literature

I have been influenced by a number of general ideas. De Kleer[271 argued

that much of our knowledge about the physical world is left implicit by clas-

sical mechanics. "Constraint propagation" can be traced to Sutherland(28].

"Silicon compilers" (29] suggested that design operations could be regarded as

transformations of formal descriptive languages. Chapman[16] argued that

"partially completed plans" represent sets of possible plans; I have directly

adapted this idea to physical artifacts.

Work using artificial intelligence methods to study mechanical design can

be arranged along a spectrum of increasing abstraction from human design

activity. At the most abstract point of this spectrum, Fitzhorn and his stu-

dents are using Turing machine models to establish fundamental conclusions

about the design process[30], while Yoshikawa[31] views design descriptions

115
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as topologies on a space similar to my artifact space. Conversely, at the "hu-

man model" end, Waldron and Waldron[32], and Ullman and Dietterich[33

study human designers using the methods of the social sciences.

Toward the "human model" end, Shin-Orr[6], Brown[20], and Mittal,

Morjaria, and Dym[14], have developed "expert systems" to design multiple-

spindle gear drives, air-cylinders, and paper-paths respectively. These pro-

grams use hierarchical control, trial solutions and back-tracking. They apply

heuristics obtained by studying experts, and appear to give nearly expert

performance in narrowly defined domains.

Near the center of the spectrum we might place work focusing on a single

strategy. The Dominic series of programs by Dixon and his students[21], im-

plement a modified "hill-climbing" procedure, searching from point to point

in the design space. These select single components, but have been incor-

porated into a larger system which adjusts the parameters and performance

of the hill-climber [3]; a similar approach is in [4]. In using this program, a

composed design is encoded by the programmer, rather than assembled from

schematics. Also by Dixon and his students are a series of works on "de-

sign by features" [10. Features are geometrically oriented entities (corners,

bosses). It appears that compatibility between mating features must be main-

tained by "hard code", and that in general the systems warn if constraints

are violated, rather than using constraints to set values. Papalambros[13],

and Rinderle[34] are working on a variety of design support issues and tools,

spread across the spectrum.

My work belongs with a cluster slightly further toward the more abstract

end of the spectrum. Ulrich and Seering [24] use "generate, test, and debug"
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schemes to transform differential equations into schematics, and schemat-

ics into more specific pictorial representations. The program does not use

quantitative methods for elimination or optimization, instead presenting the

human designer with a variety of alternatives. Wood and Antonsson[35, 36]

have been exploring the use of fuzzy set theory and fuzzy arithmetic in ana-

lyzing designs.

A version of the idea that designs represent sets of artifacts appeared in

Requicha's[17] theoretical study of geometric tolerancing.

Agogino and Cagan[37] extend formal optimization methods, for example

deriving a torsion tube from a torsion bar by dividing the moment integral

into two regions and optimizing over them.

Finally, a variety of work at about this level of abstraction uses constraint

propagation. Gossard and his students explore "variational geometry", in

which systems of equations are tied to geometric descriptions of parts. Much

of this work has been directed to issues of computational efficiency, but see

Serrano[1] for a system that allows the designer to use schematics in building

an equation network for analysis (not compilation) of a mechanical design.

Popplestone[2] et al have used an algebraic constraint propagator as part of

a very large system with similar goals. Gross[12]proposes a similar system

for architectural design. Fleming[9], propagates the geometric tolerances of

parts. Steinberg et al[4] have partially integrated top-down refinement (in the

sense of progressively dividing a design problem into modules) and constraint

propagation with a hill-climbing mechanism.

These constraint propagation systems, and my earlier work[5, 23], prop-

agate equalities only, or else give intervals the limit interpretation and prop-
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agate them using only equivalents to the range operation. However, see

Lozano-P~rez et a1138] for a generalization of the domain operation, the pre-

image, used to formulate robot motion plans under uncertainty.

7.2 Future Work

This section discusses work yet to be done, ranging from near term improve-

ments to the program, to applications of fundamental concepts to new fields,

to the development of new concepts. I address these tasks in roughly increas-

ing order of difficulty.

7.2.1 The Near Term: Checks and Improvements

The most important task of the near term is to revise the Assured, Required,

and No-stronger labeling system, replacing these with one label indicating

the the following statement is true for every artifact in the catalog, and one

indicating that it is true only for some artifacts in each basic set. Such a

replacement abandons the semantics of the Required statement; this seems

possible because the compiler should in fact eliminate any design for which

the Required statement is not satisfied. It also abandons any effort to main-

tain a notion of causality; complete examination of this issue will extend into

the medium term.

Further tasks fall into two categories: improving efficiency and ensuring

correctness.
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Improving Efficiency:

The time required by the program increases fairly slowly as the size of the

problem grows, but the program is still too slow for comfortable interaction

on realistically large problems. I envision a number of steps to speed it up.

The most important and certain in effect involves reducing the rule matching

process to an array look-up, by encoding the specification labels as integers.

After a division of the artifact space the compiler propagates specifica-

tions and performs eliminations for both daughter designs. Some improve-

ment could be gained by propagating specifications only for the most promis-

ing of the daughter designs. We also need a systematic study of the appro-

priate size for the levels in the abstraction hierarchy, of the extent to which

the hierarchy should be allowed to hide subordinate elements from the elim-

ination processes, and of the way in which catalogs should be divided.

The compiler propagates thousands of specifications; human designers

only a few. There may be good heuristics for selecting particularly powerful

specifications to propagate first. These specifications might perform most of

the eliminations. Only late in the compilation process would the program

propagate other types of specifications. Selection for early propagation might

be based on variable name, or interval type, or might key on parts with

particular characteristics-for example, high cost. Heuristics might also be

used to select the catalog to be divided, a task now performed by the user.

This would allow the program to be run in batch mode.

All of these heuristics would effect operation ordering and hence effi-

ciency only; compilation operations should still preserve correctness. Statis-
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tical analysis of specification effectiveness seems the right way to find these

heuristics; the program might keep such statistics, adjusting its own approach

as it discovered correlations.

Insuring correctness

Some of the compiler's propagation rules can be thought of as a proof sys-

tem; given some "Assured" statements describing a satisfactory design, these

should prove that the "Required" conditions are met. Actually, however, the

system has been run only the other way, eliminating components which are

incompatible with any such proof; hence the possibility, discussed above,

of eliminating the Required and Assured distinction. However, it may be

possible install a "mode switch" which would allow the program to be run

in "proof mode" as well as "elimination mode". The proof mode would be

run on completed designs to check for the completeness of the rule system

and the catalog descriptions; any design not ' '3 prove the Requirements

should have been eliminated.

There are a variety of design problems which the compiler should solve,

but on which it has not been tested. For exai,,ple, I need to connect a slip

clutch after a transmission, checking whether the compiler correctly reflects

the protection of the transmission against over-torque. I have utilized both

"power" specifications (on torque or speed) and "accuracy" specifications

(on temperature) but I have not tried to simultaneously deal with both in

complex environments. Energy-storing components such as springs and hy-

draulic accumulators require us the use of "slack variables" in ways I have
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not yet tried.

I have proven rules I have not tested empirically, and tested empirically

rules I have not proven. These sets need to be brought into correspondence.

7.2.2 The Medium Term: Extensions to the System

Parts of the areas discussed here are straightforward, but each involves ex-

tension in areas of substantial uncertainty.

Cost-Function Improvements

The current implementation of cost functions always assigns the same weights

to variables with the same name, even in different components. It also re-

quires that the cost function by a simple weighted sum monotonic functions

of single variables. Correcting these limitations should be straightforward.

A more significant improvement would incorporate Taguchi's [39] insights

into the problem of setting specifications. That is, cost functions should

reflect both "reserve capacity" (the distance between the known performance

of the system and the boundaries of the required performance) and immunity

to variation in noises and other inputs.

Graph Proofs

The correctness of many of the compiler's propagation rules depends on the

input specifications being "independent", meaning generally that knowledge

of the variable in one specification does not imply knowledge of the variable

in the other. (This is closely parallel to Bayesian independence). The precise
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formulation of independence depends on the specification types. Further,

the compiler does not propagate constraints back and forth between two

variables; it can be shown that in equation networks which are not "strongly

consistent" (Chapter 4), this can lead to errors.

Fortunately, the designs so far tested are strongly consistent, and it has

been possible to set up design problems so that the "independence" criteria

are satisfied. We need, however, formal statements of the conventions which

must be followed to assure satisfaction of these criteria. More precisely, we

need ways to show that they are satisfied for the equation network of a single

component, and then inductive proofs that the composition of satisfactory

networks can only produce a satisfactory network.

All the designs tested thus far have been tree-structured, without cycles

in the component connections. It is not clear how difficult it may be to design

systems with cycles.

State trees and qualitative inference

The compiler now incorporates a (short) tree of state sets, whose root node

is the set of all operating conditions, under which are arranged normal oper-

ating conditions, start-up conditions, and shock-loading conditions. Labeled

interval specifications apply to sets of operating conditions, specified by nam-

ing the nodes in the tree; specifications applying to the root node apply to

all of its subordinate nodes.

At present, equation specifications are assumed to apply to all states; they

should in fact follow the same convention as labeled interval specifications.
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A slightly more complex extension to the compiler would enable users and

component-programmers to extend the state-set tree. These extensions of the

compiler should allow representation of multiple quadrant operation, that is,

negative values for speeds and torques, as well as non-monotonic equations

in general. It should also address discrete quantitative variables, such as the

transmission ratio of a gear shift transmission.

The compiler uses qualitative versions of abstraction and elimination op-

erations, but does not have a qualitative analog to propagation through equa-

tions. An extensible state tree would provide such a qualitative inference

mechanism, with very clear semantics: "if in any of states S, equations E

and specifications P apply." Experience will show whether that mechanism

is adequately powerful; if not, boolean or predicate calculus statements might

be added in parallel with equations.

Completing the Rule Set

The propagation rule set is incomplete, in at least two ways. First, the divi-

sion of descriptive variables into parameters and state variables is inadequate;

other types include noise variables and adjustments. These can, perhaps,

simply be given a precedence or causality ordering, and the parameter-state-

variable distinction in the rules replaced by ordering requirements.

Second, I have examined only about 80 of the approximately 700 permu-

tations of the interval labels; I have been adding new inferences only as I

found them to be needed. It is likely that I have found most of the valid in-

ferences, and certain that I have not found them all. Ensuring completeness
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will involve systematically examining the possible inference rules, seeking to

either find counter-examples or prove their correctness.

The proofs of correctness found thus far are fairly straightforward. In light

of this, and of the number of combinations to be checked, it is intriguing to

imagine using a mechanical theorem prover to prove or disprove the other

possibilities.

New Uses for Equations

The compiler uses only algebraic equations, with a single interpretation: they

relate the values assigned to variables by a single state, or operating condi-

tion. A number of improvements are may be possible.

Some benefit would result from equations relating different operating con-

ditions. For example, speed controllers for DC motors are often characterized

by the ratio of the maximum to the minimum controllable speed. It is not

clear how such equations relate to the propagation rules, whose proofs are

based on the "single state" assumption.

More important, abstraction operations now only involve labeled interval

specifications, but there are two different ways equations could be used in

abstraction. These uses should not violate the "single state" assumption;

incorporating them should therefore be fairly straightforward.

First, equations can be used to characterize classes of artifacts, for ex-

ample, by the power to weight ratio for motors. This ratio could then be

used to eliminate AC induction motors (leaving universal and DC motors)

in weight-critical applications.
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Second, levels of modeling detail can be established, so that simplified

equations can be used early in the compilation process, and more complex

ones as the number of alternatives considered decreases. This idea is par-

ticularly interesting when applied to the abstraction of multiple component

sub-designs. The user can now give a linked set of components (say, a motor-

transmission pair) a name, and use them in further designs, but once the com-

ponent group has been connected to other components it loses its identity;

the propagation process proceeds as if the entire design had been constructed

from scratch using the individual components. I would like to automatically

generate new, simplified equations linking the inputs and outputs for such

"composite components". This would allow automatic choice between, say,

motor-transmission pairs, direct electric drive, and hydraulic pump-motor

systems; only after the choice had been made based on the top-level abstrac-

tion would expansion of the sub-graph take place.

I conjecture that much of what is often called "conceptual design" simply

refers to design with more abstract models. The abstraction mechanism

provides a principled way to formulate such models; once formulated, they

can be manipulated in the same way as the detailed models on which the

system has been tested.

Differential Equations

The compiler uses only algebraic equations, restricting it to quasi-static anal-

ysis. Extension to differential equations might follow several paths. For some

kinds of analysis, differential equations in the time domain can be trans-
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formed into algebraic equations in the frequency domain. The propagation

rules may work perfectly on such equations. Other kinds of analysis can

be performed using "discrete time steps" and hence algebraic equations to

approximate the differential equations. Finally, it may be possible to apply

the existing or newly developed inference rules directly to the differential

equations themselves.

Geometry

The compiler has thus far addressed only trivial geometric issues. We would

like to design systems in which geometry is a geometry is a critical element,

and in which specially machined components are involved. One approach

would involve the definition of a basic (and large) set of machine elements

such as wedges, screws, rotating cams, linkage pairs of varying sorts, motors,

brackets, spacers and mounting plates from which complex machines can be

constructed. Many of these elements might themselves be composite, with

their own internal structure. The critical problem is probably controlling the

"port" structure, so as to maintain distinctions and establish appropriate

links between the elements while allowing multiple elements to be formed

from a continuous piece of material.

The first efforts along these lines may involve the specification of mounting

plates for power trains of the sort already tested. Another approach might be

toy or kit designs, using Legos or an equivalent. At the next level of difficulty

lies the design of relatively decoupled and standardized systems involving

multiple machined components, probably in the domain of special production
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machinery. Design cost is important in such machines, and the ability to

rapidly design them, and to accurately predict their cost and performance,

might substantially improve industrial competitiveness.

Larger gains might accrue from standardizing the components from which

such machines are constructed. The current approach to "flexible automa-

tion" is to build programmability into the production hardware, at consider-

able cost. It may be more effective for medium scale production to use and

re-use standard component modules, automatically generating new mounting

plates and brackets to orient them for new tasks. Design compilers can sup-

port the rapid and reliable design required for this approach. They also pro-

vide a precise language for specifications, enable clear comparisons between

components, and support abstract evaluation of the capabilities of groups

of differing components. These capabilities should powerfully encourage and

support standardization.

Most difficult for compilers will be fully general shapes like the sculpted

surfaces of automobiles. The vector and surface equations involved may (or

may not) require substantial changes to the inference system. It may of-

ten be possible to simplify the inference process by parameterizing complex

shapes with a few variables important to the rest of the design, then per-

forming inferences on these parameters. Alternatively, RANGE, DOMAIN and

SUFFICIENT-POINTS may be generalized to operate on volumes of N-space,

rather than intervals on a line.



CHAPTER 7. THE CONTEXT OF THE WORK 128

Multiple Component Operators

Each schematic symbol in the compiler's input language represents a clearly

identified set of artifacts. Any operators which transform the meaning of

the symbols act on only one symbol at a time; the system is hierarchically

decomposed by virtue of the way it is constructed. The decomposition makes

possible clear semantics; that is, we know what the design stands for. The

clarity of the semantics, in turn, makes possible provably correct inferences.

Other work [26, 25] has involved operators separated from the artifact

descriptions, which "recognize" the opportunity to transform a description.

Such operators can work on more than one component at once; for example,

they can recognize that the two ends of a not-yet-defined chain of artifacts

should be joined by an artifact string of a certain kind. They therefore muddy

the semantics of the design description.

We need to examine to what extent multi-component operators are prag-

matically or theoretically needed. It they are, we need to examine whether

they can be brought into hierarchical decomposition systems in ways that

preserve clear abstraction semantics.

7.2.3 The Long Term: Outside Machine Design

Most of the following ideas lie outside my expertise. Some may in fact be

fairly easy to address; others seem certain to be hard. They are intended to

provide a feel for the possible applications of the "design calculus" outside

the realms in which it was developed.
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Large scale engineering

The general cycle of composition, abstraction, propagation, and elimination,

and model refinement seems applicable on every scale; it may provide a rig-

orous description of the activities of engineering organizations. For example,

based on past performance, it should be possible to formulate a description

of the set of engines that an automobile engine design group might develop;

this information could then be taken into account by the styling group during

the idea generation phase.

To exploit this possibility the design calculus needs to be expanded and

made yet more abstract, so that it can incorporate human activity, opti-

mization, simulation, and probabilistic representations. This thesis has not

addressed the most abstract aspects of the calculus, specifically its inter-

section with the model theory of logical semantics, but it appears that the

set-based interpretation of the meaning of design descriptions may make pos-

sible a "Fundamental Theory of Design1 ." (Unfortunately, such a theory is

unlikely to tell us much about the detailed process of design, just as the

theory of evolution says little directly about molecular biology. But, such

fundamental theories should tell us where to look for answers.)

The basic approach may be to treat abstraction, elimination, evaluation,

performance proof and so on as "generic operations", able to function on

a wide range of representations, including those in human heads. This is

a substantial task, but it can probably be approached piecemeal, given a

'Yoshikawa [31] discusses an approach to fundamental issues based the topology of an
"entity space" quite similar to our "artifact space".
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solid theoretical foundation to ensure that the pieces fit together in the end.

The ultimate goal should be a "development support" system in which ev-

ery decision made throughout the organization is swiftly and automatically

communicated to those it affects; authority is broadly distributed; and inter-

departmental coordination (if not cooperation) is guaranteed because all the

departments share the same model.

7.2.4 Planning

Considered abstractly, the quantitative inference system discusses sets of

"things", which are described using variables, linked by equations. The vari-

ables can be limited to certain sets values, or can take on all the values in

a set, or at least one of the values in the set. There seems no reason the

"things" must be artifacts.

In particular, since, i ne artifact is described only by its behavior in various

sets of states, it m4y be possible in some domains to replace the connected

artifacts with connected sets of states, yielding a planning system. This pos-

sibility is now being explored in the domain of assembly operation planning,

where the objective is to take advantage of passive compliance in the assem-

bly device (often a robot) and contacts between the part surfaces to guide

the parts together.

Other planning applications might include the management of flexible

manufacturing system, where the "things" would presumably be manufac-

turing tools. Rather than simulating system performance on a particular

production mix, the planner might be able to consider sets of mixes, looking
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for bottle-necks, or looking for the boundaries on efficiently producible mixes.

Similarly, military planners might be able to use quantitative models

of units which take into account the tremendous uncertainties in enemy

strength, leadership effectiveness, morale, and the effectiveness of fire. Finan-

cial planners might explicitly consider uncertainties in markets and interest

rates, establishing boundaries on the actions certain to lead to successful

performance.

Modeling, Diagnosis, and Sensor Fusion

Design and planning try to determine what should be; modeling, diagnosis,

and sensor fusion operations try to determine what is. But there are impor-

tar_ similarities. Uncertainty is the bane of quantitative models; it is usually

incorporated using probability. But just as there is no probabilistic equiva-

lent to such statements as "the torque will take on every value in the interval

0 to 200 newton-meters", there is no probabilistic equivalent to "a normal

patient's heart rate will vary daily at least from 55 to 80." The quantitative

inference mechanism provides a precise formulation for such statements, and

a means of interpreting and manipulating them.

This might make possible more effective model-based diagnosis systems.

"Components" of a quantitative human model would be physiological sub-

systems; "catalogs" would list versions of those subsystems as disturbed by

various diseases. The model would propagate patient data, eliminating dis-

eases that don't fit. The "cost function" for search would be based on the

number of diseases required to account for the symptoms, as well as the
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likelihood of those diseases; the "optimal solution" would be the "most rea-

sonable" interpretation of the results.

"Sensor fusion" problems, such as determining the identity of an enemy

anti-aircraft system, seem essentially similar.

Predictive models, say of the global economy, may also benefit from ex-

plicit recognition that we face a set of possible futures, and that there is a set

of possible human behaviors. Further, cause and effect are rarely precisely

assignable; even after events have occurred we can rarely unambiguously

decide which model was appropriate.

An approach might be to formulate a set of competing models for each

sub-system of the economy, then run the composite model on collected data,

eliminating inconsistent component models. In this case, we probably don't

want an "optimal model"; we want to know the range of plausible futures.

Finally, if we can do "large scale engineering", perhaps we can do "large

scale science", In dealing with such complex objects as biological systems

(or the economy), it is hard to check the models of parts of the system for

consistency with the system as a whole. If we can catalog the alternative

models for subsystems, and identify the constraints these models impose on

each other, we can perhaps establish automatic communication mechanisms

between specialists. These might significantly aid us in formulating models

of systems too complex for any single person to understand.
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1. (o n X): The variable z takes on only values in X.

2. I z X): The variable x takes on every value in X.

3 . x X): The variable x takes on some value in X.

4. ( #-* x X): The variable x takes on no values in X.

5. Assured (A): The statement is true for every artifact.

6. Required (R): The statement must be true for a satisfactory design.

7. No-stronger (N): No stronger statement is possible.

8. RANGE(G,X,Y): Z, the possible values of g(x, y), with x in X and y in
Y.

9. DoMAIN(G,Z,X): Y, such that RANGE(G, X, Y) = Z

10. SUFPT(G,Z,X): Y, the possible values of y such that
RANGE(G, X, y) 2 Z

Table A.1: Informal Definitions



1. ([ X) 4* Vx S, 3 E .X() =x

2. ( *-# X) 440 VX EX, 33E SX(S) X

3 (,Ofll X) a 39 E S.3x E X.x(s) = x

4 ( X) 4- Vs S.x(s) € X

5. Assured: A(p, C, S) 4, Va E C, p(a, S)

6. Required:
R(p, C, S) 4 VA E C, 3a E A.-p(a, S))---UNSATISFACTORY(a)

7. N((( X),C, S) VA E C, Vx E X,3a E A.39 E S.x(a,s)= x

veel8. N(( " X), C, S) 440

VA E C,
(3a E A.Vs E S.x(a, s) _< xh& 3 a E AN. E S.x(a, s) _> x,

9. RANGE(G, X, Y) = {zi3x E X, 3 y E Y.G(x, y, z) = 0}

10. CORNERS(G, X, Y) = {g(x, ye), g(x&, ye), g(x Yh), g(x&, Y)}

11. DOMAIN(G,Z,X) = Y iff RANGE(G,X,Y) = Z
= (yIVxE X, 3zE Z.G(x, y, z) = 0}

12. SUFPT(G,Z,X) = {ylZ _ RANGE(G,X,y)}
f {yIVz E Z, 3x E X.G(x, y, z) =0}

13. STATE-CONTINOUS: Let x(s8) < x < x(s2 ) for some 31,S2 E S; if this

implies that there exists some . E S such that x = x(s), then x is
STATE-CONTINUOUS.

14. PARAMETER(X) if and only if there is some single assignment xo such
that for all 9 E S, x(s) = xo.

Table A.2: Formal Definitions


